Improved Low Frequency Performance of a Geophone

S32A-19
Aaron Barzilai1, Tom VanZandt2, Tom Pike2, Steve Manion2, Tom Kenny1

1Dept. of Mechanical Engineering
Stanford University

2Center for Space Microelectronics Technology
Jet Propulsion Laboratory

Contact: barzilai@leland.stanford.edu
Acknowledgements

This work was supported by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, and is sponsored by the NASA Office of Space Access and Technology. We also acknowledge the NSF Career Award (ECS-9502046), the Charles Lee Powell Foundation, and the Terman Fellowship.

Special thanks to Marcos Alvarez at PASSCAL for his advice and assistance.
Poster Map

Title

Introduction

Conventional Geophone

Capacitive Geophone

Conclusions
Objective

- Develop an Affordable, Robust Broadband Seismometer with Resolution Comparable to the Earth’s Seismic Noise

- Enhance the Ability of Seismometer Arrays to Detect Low Frequency Signals
Seismometer Information Flow

Acceleration Input ➔ Mechanical System ➔ Relative Motion ➔ Electrical System ➔ Output Voltage
A Conventional Geophone: OYO Geospace 4.5 Hz GS-11D
Mechanical Sensitivity

- Acceleration Causes Relative Motion Between the Coil and the Housing
- Constant Sensitivity Below the Resonant Frequency
Electrical Sensitivity

- **Inductively** Measure Motion of the Coil Relative to the Magnetic Field

- Output Voltage Proportional to the Proof Mass *Velocity*
Total Sensitivity

- At Low Frequency, Measurement of Proof Mass Velocity Reduces Sensitivity
- At High Frequency, Mechanical System Reduces Sensitivity
Circuitry Noise

Typical Circuit

Output Voltage Noise Spectral Density

100x Amplifier

Peak Caused By Resonance
Conventional Geophone Resolution

Resolution \(\left[\frac{g}{\sqrt{Hz}} \right] \) = \(\frac{\text{Noise} \left[\frac{V}{\sqrt{Hz}} \right]}{\text{Sensitivity} \left[\frac{V}{g} \right]} \)

- Poorer Resolution at Low Frequency caused by Reduced Sensitivity
- Resolution worse than Fundamental Limit

An Improved Seismometer: A Capacitive Geophone

• Use a Commercial, Off The Shelf Geophone as the Mechanical System

• Improve Low Frequency Sensitivity by Capacitively Measuring Proof Mass Displacement with only Simple, External Modifications
Photos

Capacitive Geophone

Guralp CMG-40T and Capacitive Geophone
Capacitive Hardware

Circuit Model

\[C = \frac{\varepsilon \varepsilon_0 A}{a - y} \]
\[C = \frac{\varepsilon \varepsilon_0 A}{a + y} \]

\(a = \text{Balanced Gap} \approx 250 \mu m \)

\(A = \text{Area} = 3.4 \times 10^{-4} \text{ m}^2 \)

\(C_{\text{NOMINAL}} = 12.1 \text{pF} \)

Additional Housing

Fixed Electrodes

Moving Electrode

Insulation

33.37 mm

39.37 mm
Electrical System Overview

V_{BR} is a Sine Wave at the Same Frequency as V_{SIN} with Amplitude Modulated by y. The Lock-In Amplifier Demodulates the Signal to Produce an Output that is Proportional to the Displacement of the Proof Mass.
Preamplifier Circuit

Symbols and Equations:

- $f_{\text{SIN}} = 100\text{kHz}$
- $V_{\text{SIN}} = 3.8V_{\text{pk}}$
- $f_c = \frac{1}{2\pi RC} \approx 600\text{Hz}$
Preamplifier Circuit Sensitivity

Exact Solution: Voltage Amplitude is a Linear Function of Displacement

\[
V_{IN} = \left(V_{SIN} - [-V_{SIN}] \right) \left(\frac{1}{sC_A} \frac{1}{sC_B} \right) - V_{SIN} \left(1 + \frac{10k\Omega}{1k\Omega} \right)
\]

\[
V_{IN} = V_{SIN} \left(\frac{sC_B - sC_A}{sC_B + sC_A} \right) \quad (11)
\]

\[
V_{IN} = V_{SIN} \left(\frac{1/a - y - 1/a + y}{1/a - y + 1/a + y} \right) \quad (11)
\]

\[
V_{IN} = V_{SIN} \frac{y}{a} \quad (11) = 1.7 \times 10^5 \left[\frac{V}{m} \right] y[m]
\]
Demodulator

- Demodulator Output is Directly Proportional to the Amplitude of the Input at the Reference Frequency.
- In the Frequency Domain, Low Frequency Amplitude Variations Appear as Signals Near the Reference Frequency. The Demodulator Shifts These Signals Back to Low Frequency.
Demodulator Sensitivity

\[V_{OUT} = \frac{10V}{5(10^{-3})V} \frac{1}{\sqrt{2}}|V_{IN}|_{pk} = 1414|V_{IN}|_{pk} \]

Electrical Sensitivity

\[V_{OUT} = (1414)1.7 \times 10^5 \left[\frac{V}{m} \right] y[m] = 2.3(10^8) \left[\frac{V}{m} \right] y[m] \]
Total Sensitivity

- **Constant Sensitivity At Low Frequency** since Output is Proportional to Proof Mass **Displacement**

![Graph showing Geophone Sensitivity vs Frequency]

- Capacitive
- Conventional
Preamplifier Circuitry Noise

Noise Near the Reference Frequency is Mapped to Low Frequencies by Demodulator

- Noise is Constant Amplitude vs. Frequency
- Lock-In Amplification Produces 0.18 mV/√Hz Output Voltage NSD at Low Frequencies
Capacitive Geophone Resolution

Resolution\(\frac{g}{\sqrt{Hz}}\) = \frac{\text{Noise}\[\frac{V}{\sqrt{Hz}}]\]}{\text{Sensitivity}\[\frac{V}{g}\]}

- At Low Frequencies, Resolution is Limited by Thermomechanical Noise, not Circuitry
- Better Resolution at Low Frequencies as a Result of Constant Sensitivity
Clip Level

- Demodulator Output Range ±10V
- Corresponds to 0.040 μm Displacement
Resolution Comparison

USGS LNM: Seismic Noise At Quietest Sites On Earth
Resolution Comparison

• Low Frequency Resolution of a Geophone is Improved by using Capacitive Detection
• Circuitry Noise does not Limit Capacitive Geophone at Low Frequency
• Limits on Resolution of a Capacitive Geophone are Better than the Resolution of a Guralp CMG-40T Broadband Seismometer
Performance Comparison

<table>
<thead>
<tr>
<th></th>
<th>Conventional Geophone</th>
<th>Capacitive Geophone</th>
<th>Guralp CMG-40T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>100 ng/√Hz</td>
<td>.1 ng/√Hz</td>
<td>.5 ng/√Hz</td>
</tr>
<tr>
<td>Clip Level</td>
<td>90 mg</td>
<td>5 µg</td>
<td>1 mg</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>120 dB</td>
<td>90 dB</td>
<td>130 dB</td>
</tr>
<tr>
<td>Estimated Cost</td>
<td>$50</td>
<td>$500</td>
<td>$10,000</td>
</tr>
</tbody>
</table>
Conclusions

• The Low Frequency Resolution of a Geophone can be Improved by Adding Capacitive Detection
• Capacitive Detection Does Not Improve High Frequency Resolution
• Thermomechanical Noise Sets a Resolution Limit $\approx 0.1 \text{ ng/} \sqrt{\text{Hz}}$ on all Geophone Based Seismometers
Future Work

• Experimentally Validate the Predicted Resolution of a Capacitive Geophone
• Reduce Size by Integrating Electronics onto a Single Printed Circuit Board
• Operate as a Closed Loop Sensor to Increase the Dynamic Range and Tune the Frequency Response