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 Abstract 
 
In this work, we present mathematical analysis and 
experimental verification of the bifurcation limited power 
handling in MEMS resonators. We report useful cancellation 
between electrical and mechanical non-linearities. Within the 
scaling limits it has been found that the power handling 
improves for devices with larger electrode to resonator gaps. 
We also report an alternative method of measuring critical 
bifurcation using shifts in resonant frequency. 
 
 Introduction 
 
Unlike quartz crystals, where the maximum power handling 
is limited by the sustaining electronics, the power handling in 
MEMS resonators is limited by device non-linearities. 
Having high power handling is very important for phase 
noise performance in any resonator based oscillator. 
Bifurcation of the resonator response in MEMS resonators 
due to mechanical and electrical non-linearities has been 
previously reported in [1] and [2]. Fig. 1 illustrates these 
effects. The maximum usable amplitude of oscillation has 
been reported in [2] and [3] to be the critical bifurcation 
amplitude.  Beyond this point, the amplitude of oscillation 
depends on the prior conditions. In [4] and [5] it has been 
reported that the close to carrier phase noise is independent of 
amplitude below critical bifurcation condition and this noise 
is higher when the resonator is used in the bifurcation regime.  
 
In this work we analytically model and measure the 
maximum output current before critical bifurcation and, as is 
often done in the case of quartz, identify this maximum 
output signal current as the power handling. The analytical 
models developed also provide a general and quantitative 
measurement method for detection of the onset of critical 
bifurcation by measuring the shift in resonant frequency due 
to non-linearities. 

 
Theoretical Analysis 

 
A.  Non-linearity limited Power Handling 
 
In this section we present theoretical analysis for calculating 
the maximum current output before critical bifurcation, in an 
electro-statically actuated and sensed MEMS resonator. 
Introducing stiffness non-linearities in the damped second 
order system equation, the new equation of motion becomes, 
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Fig 1. Measured resonator response showing different kinds of Bifurcation, 
taken at different drive and bias voltages. The difference in resonant 
frequency on different curves is a result of spring softening due to different 
Bias Voltages. Zr is the single port resonator small signal impedance. 
 
It is also shown in [6] that the eigenfrequency of the above 
system under the assumption of small oscillations will be 
given by, 
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Where κ is given by, 
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And the critical force for bifurcation is given by, 
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For an electro-statically actuated resonator the actuation force 
is given by, 
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The inequality expresses the condition on this actuation force  
to avoid bifurcation.  

 
TABLE I 

 LIST OF SYMBOLS USED 
    
Symbol  Description 
        
λ Damping Coefficient. Also equal to half of the -3dB bandwidth. 
ω0 Natural Frequency. 
γ Excitation frequency 
α 2nd order non-linearity coefficient. 
β 3rd order non-linearity coefficient 
ωi Eigenfrequency under the influence of non-linearities. 
m Effective mass of the resonator.  
d Electrode to resonator gap size. 
VBias DC bias voltage. 
VAC Input Ac drive voltage. 
f Driving force on the resonant structure. 
fk Critical driving force for bifurcation. 
        
 



The output current of the resonator in terms of the actuation 
force is given by, 
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By combining equations (4) and (6) we can get the maximum 
output current before bifurcation as, 

1 2
out ,max Bias 02

A 8I V
d 3 3
ε= ω λ

κ
 (7) 

We can now use equation (7) to calculate the maximum 
output current limited by the onset of bifurcation for different 
cases. Two types of non-linearities are observed in these 
systems; mechanical and electrical. In this equation only κ 
depends on the non-linearities in the system. We can find out 
κ for each case and find the maximum output current 
accordingly. 
 
Leeson’s Result – It can be seen from the dependence of 
maximum output current on damping (λ) that the 1/f2 noise 
becomes independent of the quality factor Q ( 1−∝ λ ), 
because the Psig depends on 1/Q2. The noise floor (far from 
carrier noise) improves for a lower Q device, because of 
higher signal power possible for Low Q devices. Hence 
aiming for very high Q may become suboptimal from the 
perspective of phase noise in electrostatic MEMS resonators 
in which power handling is limited by bifurcation. 
 
Resonant Frequency Shift – The resonant frequency depends 
on the amplitude of vibration as given in eq. (2). It has been 
shown in [6] that when critical bifurcation occurs, it occurs at 
a frequency offset of 3λ  from the natural frequency ω0. It 
has also been mathematically shown that the offset in the 
eigenfrequency under these drive conditions is 2/3 of the 
bifurcation offset. Hence, offset in eigenfrequency is given by, 
 

2 3dB
i 0

2b
3 3

−∆ωω − ω = κ = λ = . (8) 

It is important to note here that ω0 includes the “linear” effects 
of DC bias voltage, called spring softening. Hence this 
frequency shift will be the difference in resonant frequency at 
low input AC drive, when there is no effect of non-linearities, 
and the resonant frequency at critical bifurcation caused by 
changing the Ac drive and not the bias voltage. 
 
B.  Mechanical Bifurcation 
 
The force-displacement relation for mechanical non-
linearities for a flexural beam case, which is symmetric for 
positive and negative displacement, can be approximated by, 
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Hence, it follows that 
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Substituting (10) into (7) we get,  
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If k3 is positive, it means that the spring becomes stiffer as the 
amplitude increases and this would cause bifurcation in 
which the resonator response bends towards the right side as 
shown in figure 1. 
 
C.  Electrical Bifurcation 
 
Electrical Bifurcation is more complex because of the possible 
presence of both 2nd order and 3rd order non-linear effects. In 
some devices like the flexural beam structure shown in figure 
2, the 2nd term may get cancelled due to symmetry (or be 
present due to manufacturing tolerances). In other structures 
such as breathe mode structures such cancellation may not 
happen, depending on the configuration of input and output 
electrodes. In most cases the structure can be accurately 
modeled only as an intermediate combination of both these 
effects due to process tolerances etc. In order to get a clearer 
dependence of maximum output current on design parameters 
such as gap size (d) and bias voltage (VBias), we will separate 
these into the extreme cases namely, the 2nd order dominated 
and 3rd order dominated extremes. 
 
2nd Order Electrical Non-Linearity Dominated – As has been 
shown in [2], the 2nd order capacitive or electrical non-linearity 
term can be obtained as, 
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Using this result we can obtain the maximum output current 
when limited by 2nd order capacitive non-linearities by 
substituting (12) in (3) and then into (7) as, 
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This shows that the maximum output current decreases 
increasing the bias voltage and increases with increasing gap 
size. While this may seem counter-intuitive, it should be noted 
that the input stimulus to these devices is not fixed but depends 
on the onset of critical bifurcation. Here although the motional 
impedance decreases, as expected, if the bias voltage is 
increased and the gap size is decreased, doing this increases the 
capacitive non-linearities enough that the maximum output 
current before occurrence of bifurcation decreases.  
 
3rd Order Electrical Non-Linearity Dominated – Similarly, the 
3rd order capacitive or electrical non-linearity term can be 
obtained as, 



 
Figure 2. Theoretical dependence of power handling on Bias Voltage and 
gap size d for a generic electrostatically actuated Si MEMS resonator. It can 
be noted that the dependence is different in the electrical bifurcation regime 
when the dominant electrical non-linearity terms are 2nd order and when they 
are 3rd order. 
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and the corresponding maximum output current is, 
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Here again we see that the output current increases with 
increasing gap size, in spite of decreasing the motional 
impedance. Eqs. (13) & (15) tell us that getting better power 
handling and hence better phase noise in MEMS resonator 
based oscillators is in departure from reducing the motional 
impedance alone. 
 
D. Non-Linearity Cancellation 
 
As has been reported in [2], in most cases of Silicon MEMS 
resonators the mechanical stiffness non-linearities work 
towards making the structure stiffer and thereby cause “right 
hand side bifurcation” as shown in Fig. 1. Capacitive non-
linearities occur at higher bias voltages when the capacitive 
forces are stronger and cause “left hand side bifurcation,” also 
shown in Fig. 1. There exists an intermediate regime, where the 
capacitive non-linearities cancel out the mechanical non-
linearities thereby allowing higher amplitude of oscillation and 
hence higher output current. This is schematically explained in 
Fig. 2.  
 

Experimental Results 
 
We used a 1.3MHz Doubled-Ended Double Anchored Tuning 
fork resonator (DETF), shown in figure 3, fabricated using the 
epi-seal encapsulation process as discussed in [7] for these 
experiments. The experimental setup used for measuring 
maximum output current is shown in Fig 4. 
 
The measured maximum output current, measured on two 
different samples, before critical bifurcation is shown in Fig. 5. 
For making this measurement the input AC voltage to the  

 
Figure 3. Schematic of the DETF resonator used. The drawn gap size is 
1µm, the beam lengths are 200µm with a beam width of 8 µm. These devices 
were defined on an SOI wafer and then encapsulated with an epi-polysilicon 
cap. 

 
Figure 4. Diagram illustrating the measurement setup used for measuring the 
power handling. The resonator output current was amplified using a single 
transimpedance stage of gain 10kΩ. The 20dB attenuator helps prevent 
overloading of the signal analyzer input channel. 
 
resonator was increased in increments of 1dB, until bifurcation 
is observed. The drive conditions 1dB below this bifurcation 
point was used as the max output current before critical 
bifurcation, and accordingly error bars corresponding to 1dB 
error bars have been inserted on the presented data. 
 
The frequency shift at critical bifurcation was also measured 
and is shown in Figure 6. Figure 7 shows measured phase noise 
of an Oscillator based on this resonator using compression gain 
control. 
 

Conclusions 
 

It is evident from Fig. 5 that cancellation between electrical 
and mechanical non-linearities can be achieved, by selecting 
the correct gap size and correct bias voltage. 
 
It can also be seen from (13) & (15) that the power handling 
increases with increased gap size in the electrical bifurcation 
dominated regime. Due to cancellation between the two kinds 
of non-linearities, the overall maximum output current 
possible will be larger for devices with larger gaps, if high 
bias voltage can be applied. There is a trade-off here that with 
larger gaps, larger bias voltages will be needed. 
 
 



 
Figure 5: Measured output maximum current at the onset of bifurcation at 
each bias voltage for two different devices. The two devices are the same 
design fabricated on the same silicon SOI wafer. This measurement was 
taken by increasing the input stimulation level for each bias voltage and then 
noting the output current onto a 0Ω load (Fig 4) at the onset of bifurcation. 

 
Figure 6: This shows the ratio of peak frequency shift (between the 
perfectly linear resonant frequency which occurs at low excitation and the 
resonant frequency when a device at critical duffing, at the same DC bias 
voltage) and the -3dB bandwidth of the device. The ratio changes sign as the 
non-linearities go from mechanical to electrical, but remain close to the 
predicted value of 1/ 3±  (drawn as dashed lines for reference) except in 
the intermediate or cancellation regime.  This data produces points towards 
the possibility of the non-linearity induced frequency shift as a method to 
detect critical bifurcation on devices in oscillator circuits, where only 
frequency is a measurable parameter. 
 
From Fig. 6, we get an alternative and quantitative method of 
detecting the critical bifurcation point using the non-linearity 
induced frequency shifts. This is particularly useful for 
detecting critical bifurcation in oscillators where the 
resonator response measurement is unavailable. 
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