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Abstract

Thermoelastic dissipation (TED) is analyzed for complex geometries of

micromechanical resonators, demonstrating the impact of resonator design (i.e. slots

machined into flexural beams) on TED-limited quality factor.  Clarence Zener first

described TED for simple beams in 1937.  This work extends beyond simple beams into

arbitrary geometries, verifying simulations that completely capture the coupled physics

that occur.  Novel geometries of slots engineered at specific locations within the flexural

resonator beams are utilized.  These slots drastically affect the thermal-mechanical

coupling and have an impact on the quality factor, providing resonators with quality

factors higher than those predicted by simple Zener theory.  The ideal location for

maximum impact of slots is determined to be in regions of high strain.  We have

demonstrated the ability to predict and control the quality factor of micromechanical

resonators limited by thermoelastic dissipation.  This enables tuning of the quality factor

by structure design without the need to scale its size, thus allowing for enhanced design

optimization.
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Introduction

Silicon micromechanical resonators are being considered for frequency reference

applications because of their potential as high frequency, high quality factor, Q,

resonators in a very small volume [1].  The fundamental behavior of these silicon

resonators must be well understood in order to make silicon resonators a viable option for

replacement of existing frequency reference technologies. The Q is important because it

affects parameters that are critical in frequency reference applications (e.g. motional,

resistance, phase noise).  Quality factor in this case is a measure of the amount of

mechanical energy the resonator dissipates.  The ways in which the resonator can

dissipate energy include air damping, clamping loss through the anchors, surface losses,

material losses, and thermoelastic dissipation (TED), many of which are still not well

understood.  This work focuses on design techniques to improve and control Q of

resonators limited by TED, which is the energy loss due to the relaxation of mechanically

induced temperature gradients (Figure 1), as well as the simulation and experimental

verification of resonant beams with TED-limited Q.

Background and Theory

Zener initially formalized the theory of thermoelastic dissipation in 1937 (he

called it internal friction)[2, 3] for the case of a vibrating reed, which is a similar structure

to a resonant beam currently used at the microscale.  Many reformulations of the problem

have occurred since [4-7], including investigations of ring-shaped resonators [8] and

extraction of the flexural component of arbitrary mechanical modes to determine the

effect of classic thermoelastic damping on a resonant structure [9].
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Zener derived a relationship to provide the maximum possible TED-limited Q for

a simple beam.  Other loss mechanisms could cause additional dissipation, and thereby

cause the Q to be lower than the value predicted by Zener, but the Q could not be any

greater than the TED imposed limit.  He began by defining the dominant thermal time

constant, which comes from the thermal eigenmode solutions of the system,
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where τ is the time constant at which the temperature gradient decays in the fundamental

eigenmode, b is the thickness in the direction that the beam flexes, cp is the specific heat

at constant pressure, ρ is the density, and κ is the thermal conductivity.  The maximum

TED-limited quality factor, QTED, a resonant beam can attain is dependent on the resonant

frequency of the beam,
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where E is the Young’s Modulus, T0 is the equilibrium temperature of the beam, α is the

coefficient of thermal expansion, and ω is the angular frequency of mechanical

resonance.

The Zener theory was derived explicitly for the case of a simple beam, as this kept

the problem tractable with the tools available at the time.  The Zener theory contains the

valid approximation for simple beams that only one thermal mode is significantly
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coupled to the mechanical mode.  An exact expression for the Q of TED in simple beams

was subsequently derived [5].  The Zener theory works well for simple beams and has

been experimentally verified at the microscale [10-13].  However, in order to treat more

complex structures, it is necessary to use the more general theory derived by Zener that

includes multiple thermal modes, as opposed to the more commonly cited derivation for a

simple beam with a single, dominant thermal mode.  The work in this paper gives

experimental results that do not agree with predictions made by the simple Zener theory,

showing that the more general theory is required.  Resonant beams that have openings, or

slots, in the beams disrupt the heat flow across the beam, causing multiple thermal modes

to interact significantly with the mechanical mode.

Other Energy Loss Mechanisms

A significant difficulty in quantifying the different energy loss mechanisms that

limit quality factor in micromechanical resonators is the isolation of one specific energy

loss mechanism.  All loss mechanisms contribute to the quality factor as shown by

equation 3,

� 

1
Qtotal

=
1

Qindividual
∑ (3)

where Qtotal is the overall Q observed in measurement and Qindividual is the Q from each of

the loss mechanisms, such as air damping, surface loss, material losses, anchor damping,

and TED.  This interrelated nature has kept many of the energy losses from being well
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understood.  Therefore, in order to isolate one energy loss mechanism, efforts must be

made to minimize the impact of all the others.

A tuning fork architecture was used to minimize clamping loss.  Clamping loss in

micromechanical resonators is an area that has been receiving an increasing amount of

attention [14-18], but it is still not fully understood.  The tuning fork architecture should

place a node at each anchor, because the beams are actuated 180° out-of-phase.  The fact

that the Q varied significantly while the tuning fork anchor architecture was constant for

all the resonators is an indicator that it did not have a significant influence on Q.  The

clamped-clamped architecture was used to increase the resonant frequency of the devices

over the single-clamped architecture.  Air damping, common Q-limiting mechanism, is

often mitigated with hermetic vacuum packaging.  The resonators in this study were

fabricated in a wafer-scale vacuum encapsulation at a pressure of < 0.003 mBar [19].

Recent work elsewhere has confirmed that vacuum encapsulation can lead to excellent

stability in micromechanical resonators [20].  Demonstration that the encapsulation

provides an adequate vacuum is given in the results section.

Intrinsic material losses and surface dissipation losses are two other energy loss

mechanisms that are often mentioned. Material losses are defined here as losses inherent

in the material structure, affected by the material properties and frequency but not by the

resonator geometry.  Bulk mode silicon resonators have been reported at 12 MHz with a

Q of 180,000 [21]. Since the resonators in this paper were in the same frequency range

and made of the same material but had lower quality factors than the cited work, intrinsic

material damping is not likely to be dominant.  Surface dissipation losses, which are

thought to be caused by the chemical states at the resonator surface, become more
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prominent as any of the resonator dimensions are scaled toward the nanometer regime

[11, 22-24].  Since all the dimensions of our resonators are in the micrometer regime and

our packaging provides a chemically stable environment, it is unlikely that surface

dissipation mechanisms play a role.

Design

For silicon resonators, a minimum occurs in the TED limited Q (~10,000) at

about 1 MHz for flexural beams with a thickness of 12 µm.  A specific addition to the

geometry, slots cut into the beams, was added in an effort to improve the quality factor of

beams. The slots act to disrupt the heat flow across the beam, thereby altering the process

of thermoelastic dissipation.

If heat-disrupting slots are to be used in an attempt to alter the TED-limited Q, the

optimal location of the slots must be determined.  Resonant beams were designed with

two slots in each beam, shown in Figure 2.  The slot location is varied along the beam to

determine the impact of slot location on TED-limited Q.

Once the slot locations that maximally impact Q were determined by experiments

and simulation, as described below, another set of tuning forks was designed.  Tuning

forks without slots were designed to confirm the classical Zener theory at the microscale,

as well as tuning forks with four slots on each beam, to confirm that complex geometries

need a more advanced treatment to predict the TED limited Q.  It was necessary to

fabricate resonators with a range of frequencies, fresonant, while keeping the beam thickness

constant.  A fixed beam thickness would maintain the same thermal time constant, τ,

which is defined by the thickness of the beam.  So, a parameterized spread of tuning forks
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without slots was fabricated that had a thickness of 12 µm and a length, L, that varied.

Since 

� 

fresonant ∝
1
L2

, a considerable frequency range was covered, ~150 kHz to ~ 10MHz.

The highest frequency of beams was limited by small length-to-thickness ratios that could

cause problems with anchor loss and measurement difficulties due to small capacitive

area and high stiffness.  Additional parameterized spreads of tuning forks were fabricated

with slots.  In an effort to maintain a similar thermal mode profile, the slots in the beams

were scaled with beam length.  A set of tuning forks with slots that had length 1/10 of the

beam length, as well as a set of tuning forks with slot length 1/6 of the beam length were

fabricated.  Four slots were used on each beam, as can be seen in Figure 3.  Using insight

from the moving slot experiment, the slots were placed where they would have the

greatest impact, at the ends and center of the beams.

Simulation

The simulation results given below were obtained from a 2-D fully coupled

thermal-mechanical finite element eigensolution in FEMLAB.  The coupled mechanical

and thermal differential equations are solved for a complex eigenvalue, and the TED-

limited Q can be extracted from the real and imaginary components of the eigenvalue.

Information regarding the methodology of these can be found in [25-27].

Some intuition regarding why slot location is important can be gained from

viewing the fully coupled simulation of a regular clamped-clamped beam.  As can be

seen in Figure 4, the temperature gradient from one side of the beam to the other is not

uniform.  It is greater near the anchor and center of the beam.  This is due to the higher

strain gradient at these locations. The high strain gradient causes a temperature gradient,

causing heat to flow, which is the energy loss mechanism of TED.  This logic implies that
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slots near the anchor and center of the beam will have the greatest impact.  Results given

below were found to confirm this.

Simulations showed a clear relationship between slot location and TED-limited Q.

Two slots were placed on each beam a specified distance from each of the anchors, as

shown in Figure 2.  This distance was varied to test for dependence of TED limited Q on

slot location.  Geometrical parameters used for the beam and slots of the two slot beams,

as well as material parameters for the two and four slot beams, are given in Table 1.  The

same material parameters were used for single crystal and polycrystalline silicon.

Previous measurements have suggested the material parameters were similar for single-

crystal silicon and our highly-doped polycrystalline silicon process.  In particular, a

thermal conductivity of 90 W/m/K is a reasonable value for highly doped single and

polycrystalline silicon when compared to values previously reported [28, 29].

Simulating just one of the beams in the tuning fork is done to reduce the number

of elements in the simulation and improve convergence.  This neglects heat lost in the

coupling beams and may overestimate Q.  To the extent that the resonating beam

dominates thermoelastic losses, this approach predicts the overall trends in Q very well,

as our experiments show.  The temperature profiles from fully coupled-eigensolutions for

several beams in the parametric slot location study are shown in Figure 5.

Experimental Results

Resonators were fabricated inside a single-wafer vacuum encapsulation process

[19, 30], Figure 6, which provides a hermetic seal at a pressure < 0.003 mBar.  The

devices with two slots were made of polycrystalline silicon, while the devices with four

slots were made from single-crystal silicon.
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The resonators were capacitively actuated and capacitively sensed in-plane across

a 1 µm gap, and the measurements were performed with a probe station at the wafer

scale.  The actuation and sensing were done on the outer electrodes and inner electrode

(Figure 2), respectively, and a DC voltage (typically ~10 V) was applied to the resonator

beam.  A low input-capacitance active probe, GGB industries picoprobe model 34A, was

used to sense the output signal.  Standard tungsten probe tips were used for the rest of the

connections.  A typical measurement result is shown in Figure 7.

Resonators with different slot locations were tested and compared to simulation.

In the study where slot location was varied, the length of the two slots was fixed at 40

µm, and the beam length was 400 µm.  Figure 8 shows that the experimental results

confirm the dependence of TED-limited Q on slot location.  While the location of slots

affected Q by more than 40%, the resonant frequency was changed only 5% by the

different slot placements.

Simulations for the second set of tuning forks where resonant frequency is varied

by changing the length, are given in Figure 9.  Notice that the addition of slots into the

beams allows for beams with quality factors greater than theory would predict for simple

beams.  In these studies where slot length was varied, the slot location along the beam

was kept fixed.  These studies used fours slots, with a slot 2 µm from each end of the

beam, and two slots separated by 4 µm at the center, as shown in Figure 3.

The resonators were tested and compared to simulation.  As shown in Figure 10,

the measured Q values follow the trend predicted by the simulations.  There is an offset

in the data for the resonators with slot length 1/10 of beam length, likely due to an

additional energy loss mechanism.  Also, the material parameters and process variations
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are not perfectly known, which could lead to some shift in the simulation.  The shape of

the Q dependence on frequency, however, is similar to that predicted by simulations.  If

another loss mechanism, Qother, which incorporates all loss mechanisms other than TED,

is assumed for the 1/10 slot length case, equation 3 can be used to extract the likely Q

limitation of TED from the Qtotal that is experimentally measured.  As can be seen in

Figure 10d, assuming a relatively large Qother of 100,000, which implies a relatively small

energy loss, causes the experiments and simulations to converge.

The addition of slots was shown to increase Q by as much as a factor of four.

While this case demonstrated that the introduction of slots could affect the heat flow to

improve the Q, it is important to also note that there are regions of the design space where

the addition of slots will decrease Q, such as the high frequency range of Figure 9.

Therefore, it is necessary to carefully consider a proposed design change to guarantee that

it will have the desired effect.

For the resonators of Figure 10, the highest Q device was measured in a vacuum

chamber after the encapsulation was removed, and the Q was not different from the Q

measured in encapsulation.  As can be seen in Figure 11, the Q of a 328kHz resonator

with 1/6 slot length to beam length ratio in vacuum was 41,000.  This is in the same range

as the Q measured in the vacuum encapsulation.  From the data given in Figure 10, the

328kHz resonator with 1/6 slot length had the lowest resonant frequency and the highest

Q.  Since the pressure-limited Q would increase as the beam is scaled to shorter lengths,

it is reasonable to conclude that none of the parts are limited by air damping.

Coupling of Multiple Thermal Modes for Slotted Beams
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There are several subtle points regarding TED in slotted beams that deserve

explanation.  Most importantly is that the mechanical mode of slotted beams can couple

to more than one thermal mode.  Zener proved that only one thermal mode is well-

coupled (98.6%) to the mechanical mode of a cantilever structure, while the coupling of

all other modes is negligible [2].  In fact, the use of the Zener equation for clamped-

clamped beams is not technically correct, as the thermal mode that is well coupled to

clamped-clamped beams is different than the one that is well coupled to cantilevers.

However, the frequency of the dominant thermal mode in the clamped-clamped beam is

within a few percent of the frequency of the thermal mode in the cantilever case, so the

classic Zener equation is still a fair approximation for clamped-clamped beams.

For beams with slots, multiple thermal modes can have significant coupling to the

mechanical mode.  The involvement of multiple thermal modes in the thermoelastic

dissipation of slotted beams explains three phenomena that may be counterintuitive.

First, a frequency shift of the minimum Q between the slotted resonators and the simple

beam resonators (no slots) can be seen in Figure 9.  This frequency shift is caused by a

shifting of the coupling from the initial thermal mode of the simple beam to higher

frequency thermal modes in the slotted beams, with multiple thermal modes contributing

to the Q.  To restate this point, a single thermal mode is fully coupled to the mechanical

mode in simple beams, while multiple thermal modes each couple partially to the slotted

beams.  The original thermal mode is still partially coupled in slotted beams, but other

(higher frequency) modes also cause energy dissipation.  The frequency of minimum Q

differs between the two sets of slotted beams, because the differing slot length ratios alter

the thermal modes and their coupling to the mechanical mode.  Second, the minimum Q
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is different for the beams without slots and beams with slots, Figure 9.  This is because

the addition of slots causes the initial thermal mode to be less than fully coupled to the

mechanical mode.  The increased coupling of the higher frequency thermal modes is not

enough to overwhelm the reduced coupling to the initial thermal mode, so the Q

minimum is increased with the addition of slots.  In other words, there is a reduction in

energy dissipation for the worst-case frequency for the slotted beams as opposed to the

simple beams.  The two sets of slotted beams with different slot length ratios have

different Q minima, again because the different slot length ratio alters the thermal modes

and coupling of these modes.  Third, the Q for slotted beams is worse than the Q of

simple beams for some frequency regimes.  While the Q minimum is higher for the

slotted beams, the Q is not higher for all frequencies of slotted beams, with the higher

frequency slotted beams having a Q that is worse than regular beams of the same

frequency, Figure 9.  This is because the higher frequency slotted beams are partially

coupled to higher frequency thermal modes, while the coupling of simple beams is only

to the initial thermal mode with negligible coupling to these higher frequency modes, as

stated by Zener.

Conclusion

We have performed a comprehensive study, including modeling and experimental

verification of thermoelastic dissipation as a Q-limiting phenomenon in micromechanical

resonators.  Our work highlights the importance of using advanced modeling techniques

to optimize structures for high Q.  The equation by Zener that is frequently cited lends

itself to analytical study of only the simplest case, and cannot be easily used to optimize

Q in more complex structures.  By applying a fully coupled finite elements simulation,
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we demonstrate the predictive capability in our design and optimization process.

Leveraging this tool, we designed, fabricated, and tested resonators with a proscribed

thermoelastic damping.  In particular, we designed slots into flexural beams to drastically

alter the coupling of mechanical and thermal eigenmodes.  The impact of slot location on

the beam was studies, showing that slots at points of high strain had the largest impact on

Q.  We successfully demonstrated the ability to produce resonant beams with similar

dimensions and frequency but with a wide range (up to a factor of four) in quality factor.
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Figure 1. Conceptual drawing of heat flow across a flexed beam, which leads to thermoelastic
dissipation.
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Figure 2. Schematic top view of clamped-clamped resonator.  The resonator consists of two beams
coupled together at both ends.  Each beam has two slots cut into it a certain distance away from the anchor.
Slot width is 1 µm, and beam thickness is 12 µm.  The tuning fork resonates in-plane.
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Figure 3. Schematic of slotted beam.  Beam length is scaled to achieve a range of resonant frequencies.
The ratio of beam length to slot length is fixed.  Slot distance and beam thickness are fixed at 2 µm and 12
µm, respectively.
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Figure 4. Temperature profile of solution for fully-coupled eigensolution solved with FEMLAB.  Note
the increased temperature gradient near the end and center of the beam.
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Parameter Value Units
Slot Length 40 µm
Slot Width 1 µm
Beam Length 400 µm
Beam Thickness 12 µm
Resonant Frequency ~600 kHz
Density, ρ 2330 kg/m3

Young’s Modulus, E 157 GPa
Poisson’s ratio, ν 0.3
Coefficient of Thermal Expansion, α 2.6e-6 1/K
Thermal Conductivity, k 90 W/m/K
Specific Heat, cp 700 J/kg/K
Temperature, T 300 K

Table 1. Material properties and design information for beams with heat-interrupting slots.
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Figure 5. FEMAB fully-coupled solution for 400 µm beam with slots 2 µm, 75 µm, and 158 µm from
each end of the beam.  Temperature profile is shown on deformed beam.  Half of each beam is shown.
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Figure 6. SEM Cross section of encapsulated tuning fork resonator with slot.
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Figure 7. Gain-Phase plot for tuning fork with slots 2 µm from beam edge.
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Figure 8. Comparison of simulation to experimental results for resonators with the same geometry,
except for the location of the heat interrupting slots (desing from Figure 2).  Experimental data confirms
that the location of slots on resonant beams has an impact on quality factor.  Simulations were performed
before experiments, and no adjustments were made to the model parameters to fit the simulations to the
experiments.  At least eight simulation points were used to get the simulation curves of Figure 8, Figure 9,
and Figure 10.  Simulation points were left off the graph were left off for clarity of the data points.
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Figure 9. Simulation results for beams with no slots, slot length = 1/6 beam length, and slot length =
1/10 beam length plotted against Zener theory.  Simulations for beams with no slots agree with Zener
theory to within 7% for all the data shown.  Note that the predicted TED-limited quality factor varies
greatly for the three types of beams, even though the only difference in geometry between the types of
beams is the addition of slots.  As can be seen, slotted beams allow for quality factors that would be
theoretically unachievable with solid beams.
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(a)

(b)
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(c)

(d)

Figure 10. Experimental results of beams with four slots, the same width, and varying length compared
to finite element simulation and simple Zener theory.  (a) Beams without slots.  (b) Beams with slots =
1/10*beam length.  (c) Beams with slots = 1/10*beam length, where Qother = 100,000 has been removed (d)
Beams with slots = 1/6*beam length.
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Figure 11. Quality Factor vs. Pressure for 328 kHz resonator (slot length = 1/6 beam length).  The Q of
the lowest frequency, highest Q part was not pressure limited, indicating that none of the resonators shown
above were pressure limited.


