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Abstract 

The atomic force microscope (AFM) is a tool that enables the measurement of 

precisely localized forces with unprecedented resolution in time, space and force.  At the 

heart of this instrument is a cantilever probe that sets the fundamental limitations of the 

AFM.  Piezoresistive cantilevers provide a simple and convenient alternative to optically 

detected cantilevers, and have made it easier for commercial applications to exploit the 

power of the force microscope.  Unfortunately, piezoresistive cantilevers do not provide 

performance levels equal to those of the optically detected AFM.  Several advances will 

be discussed in this work that largely erase that discrepancy, and in some cases take the 

capabilities of the piezoresistive cantilever beyond those of the standard AFM cantilever. 

The primary key to improved cantilevers is to make them thinner and shorter, for 

increased force resolution and bandwidth.  A fabrication technique using epitaxially 

grown piezoresistors is shown to reduce cantilever thickness a factor of four below the 

thinnest implanted piezoresistors.  Using this approach cantilevers under 100 nm have 

been constructed, with force sensitivity 4 orders of magnitude greater than commercially 

available piezoresistors.  These cantilevers are capable of single digit femto-Newton-per-

root-Hertz force resolution. 

These ultra-thin piezoresistive cantilevers suffered from an unexpected increase in 1/f 

noise, although the net force resolution was still greatly improved.  It is shown in this 

work that the 1/f noise observed in piezoresistive cantilevers can be accounted for using a 

30-year-old model of 1/f noise proposed by F. N. Hooge.  This model states that the 1/f 

noise level of a resistor is proportional to the total number of carriers.  For a given dopant 

concentration, smaller cantilevers therefore have fewer carriers and higher 1/f noise. 

From this relation between the number of carriers and the 1/f noise, the processing 

and design of piezoresistive cantilevers was optimized.  Previously unknown trade-offs 
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are demonstrated between piezoresistor size, doping density, dopant thickness and other 

parameters.  In most cases, clearly defined optima exist that determine the fundamental 

capabilities of piezoresistive cantilevers. 

Finally, in an effort to extend the force measurement capabilities of piezoresistors, 

particularly in the presence of steep force gradients, a novel axial resonant piezoresistive 

AFM probe was developed.  This probe has demonstrated the ability to measure pico-

Newton forces with a probe that is extremely rigid (>500 N/m) and is thereby immune for 

snap-down instabilities. 
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Introduction 

I began work at Stanford for Dr. Kenny at the end of 1995, with a desire to learn 

micromachining, but no clear project in mind.  Although I had no experience with atomic 

force microscopes, I came up with the notion to micromachine a device that could unzip 

strands of DNA as a tool for sequencing them.  Related work was being done by Dr. 

Colton at the Naval Research Laboratory (NRL) in Washington, D.C. and to my surprise 

it turned out that he and Dr. Kenny were good friends.  It further turned out that Dr. 

Colton’s group had already begun working on an experiment very similar to the one I had 

envisaged, but required custom microfabricated cantilevers.  I began my work in the 

clean room making cantilevers for the DNA work, while paying the lab fees by making 

piezoresistive cantilevers for another biosensor project at the NRL. 

After a couple of summers in Washington, and several cantilever iterations, we still 

did not have a force detection apparatus with the single pico-Newton force resolution and 

10s of kilohertz bandwidth to see the signals we sought.  The DNA project wound down 

as post-docs at the NRL finished up, but the need for improved force probes was clear, 

and I devoted the rest of my time at Stanford to understanding the fundamental issues and 

improving the probe designs.  The piezoresistive cantilevers for the biosensor had been 

successful, and I felt piezoresistors held promise as a high bandwidth sensor that could 

achieve the force resolution we were seeking.  The inherent simplicity and convenience 

of piezoresistance also made it attractive as a versatile sensor for a variety of sensing 

applications beyond the laboratory.  As a result, the rest of my efforts were focused onto 

understanding and improving piezoresistive force probes. 

There are three main results in this thesis:   

• a processing improvement to advance conventional piezoresistive cantilevers;  

• optimization of such cantilevers based on fundamental noise limitations;  
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• a novel resonant force probe based on a resonant piezoresistive beam.  

Although the ultimate goal for both the piezoresistive cantilevers and the axial 

resonant probes is maximum force resolution, design guidelines are initially presented 

based only on a sensitivity analysis without including the noise effects.  While it is my 

feeling that noise is often neglected in MEMS device design and testing, in these two 

cases appropriate design guidelines can be derived from a sensitivity analysis alone, and 

the noise is reserved for a more complete treatment in later chapters.  This approach also 

reflects the order in which the actual devices were designed and fabricated, since some of 

the noise understanding was developed through experimental results after device 

construction. 



   

 

ix

Table of Contents 

Abstract iv 

Acknowledgements  vi 

Introduction vii 

Table of Contents  ix 

List of Tables  xii 

List of Figures xiii 

List of Figures xiii 

Chapter 1. Background and Motivation  1 

1.1. AFM background  1 
AFM imaging modes 
AFM force curve mode 
Unzipping DNA 

1.2. Piezoresistor background  9 
Piezoresistive cantilever applications 

Chapter 2. Fundamental parameters of cantilever sensors 19 

2.1. Cantilever design parameters 19 
Sensitivity 
Bandwidth 
Noise 
Resolution 
Spring constant 
Other parameters 

2.2. Force instabilities 26 
Attractive force instabilities and probe stiffness 
Force instabilities in molecular manipulation 

Chapter 3. Design for Sensitivity and Bandwidth 33 

3.1. Mechanical properties of a cantilever beam 33 

3.2. Stress distribution in a cantilevered beam 35 



   

 

x

3.3. The piezoresistive coefficient  36 

3.4. Piezoresistor sensitivity 38 

3.5. Non-ideal dopant distributions 41 
The advantage of thin piezoresistors 

3.6. Summary 45 

Chapter 4. Constructing Ultrathin Piezoresisitve Cantilevers 47 

4.1. Standard Fabrication Procedure 47 

4.2. Epitaxially grown piezoresistors 50 

4.3. Detailed epitaxy fabrication procedure 51 

4.4. Results: 100 nm-thick piezoresistive cantilevers 53 

4.5. Outstanding fabrication issues 57 
Back-side etching 
Buried oxide removal 
Cantilever release 

4.6. Summary 60 

Chapter 5. Noise in piezoresistors 63 

5.1. General noise observations  63 

5.2. Johnson noise 64 

5.3. 1/f noise 65 
Hooge noise theory 
Verification of the Hooge formula 
Computing the number of effective carriers 

5.4. Thermomechanical noise 71 

5.5. Summary 73 

Chapter 6. Optimization of piezoresistor design and processing 77 

6.1. Geometrical design optimization 77 
Thickness 
Width 
Leg length 

6.2. Dopant concentration 81 
Dopant depth 
Concentration 



   

 

xi

6.3. Surface treatment and anneal 87 

6.4. Operation 91 

6.5. Predicted resolution 91 

6.6. Example of cantilever design 93 

6.7. Summary 93 
Design 
Processing 
Operation 

Chapter 7. A novel axial resonant probe 99 

7.1. An axial resonant AFM probe 101 

7.2. Sensor design 103 
Beam design 
The tether 
Probe tip 
Driving the oscillator 
Secondary detection 

7.3. Fabrication 109 

7.4. Applying calibrated forces 110 

7.5. Results 113 
Piezoresistor calibration 
Unwanted tip modes 
Demodulating the resonant signal 
Force resolution 

7.6. Summary and future work 120 

Epilogue 125 
Thin Piezoresistive Cantilevers 
Axial Probe 

APPENDIX A: Table of Variables 129 



   

 

xii

List of Tables 

Table 1.   Modulus of elasticity (E), modulus of rigidity (G) and 
density (ρ) for silicon and silicon nitride. 34 

Table 2.  Piezoresistive coefficients for n-type and p-type silicon and 
germanium. 38 

Table 3.   Building blocks for computing the number of squares 
resistance.  71 



   

 

xiii

List of Figures 

Figure 1-1.   Schematic of atomic force microscope with optical lever 
detection.  2 

Figure 1-2.   (a) 5 nm contact mode atomic resolution AFM image of 
mica.  (b) 252 nm tapping mode AFM image of an 
individual human transcription factor 2: DNA complex.  3 

Figure 1-3.   Schematic illustration of a force curve.   4 

Figure 1-4.   Unzipping DNA with an AFM cantilever.  6 

Figure 1-5.  50 µm × 0.1 µm tipless silicon nitride cantilevers with 5 
µm paddle. 8 

Figure 1-6.   Schematic of a piezoresistive cantilever.  11 

Figure 2-1.   Piezoresistive cantilever in a Wheatstone bridge circuit.   20 

Figure 2-2.   Matlab simulated signals in the presence of white noise.   22 

Figure 2-3.   Diagram of an attractive force potential versus distance 
with contours of the cantilever spring constant. 28 

Figure 3-1.    Finite element model showing the stress distribution in a 
cantilever beam. 36 

Figure 3-2.   Diagram of integration variables and cantilever dimensions. 39 

Figure 3-3.   Displacement sensitivity vs. thickness for a 10 µm wide 
cantilever with given k or f. 44 

Figure 3-4.   Angular alignment difficulties with short cantilevers. 45 

Figure 4-1.   Generic process for the fabrication of a piezoresistive 
cantilever.  48 

Figure 4-2.   TSUPREM-4 simulations showing the dopant profile 
immediately following epitaxy, and after a 3-hour anneal at 
700 °C. 51 

Figure 4-3.   SEM of 87-91 nm-thick cantilevers. 53 

Figure 4-4.   Response of 0.089 µm × 44 µm × 350 µm cantilever to 1 
µm and 0.1 µm displacements. 54 

Figure 4-5.   Piezoresistor response to thermomechanical noise in a 
30 mTorr vacuum. 56 

Figure 4-6.   Backside release mask for DRIE release. 58 



   

 

xiv

Figure 4-7.   Polyimide residue on FABS cantilevers after O2 plasma 
release. 60 

Figure 5-1.  Typical measured cantilever noise spectrum from thin 
(1000 Å) cantilevers showing Johnson and 1/f noise. 63 

Figure 5-2.   Schematic of piezoresistive cantilever with variables. 64 

Figure 5-3.   Noise spectra of the 100 nm-thick cantilevers shown in 
Figure 4-3. 67 

Figure 5-4.  Measured 1/f noise power density at 10 Hz vs. number of 
carriers for piezoresistive cantilevers. 68 

Figure 5-5.   Finite element solution of current density in a cantilever.   70 

Figure 5-6.  Displacement as a function of frequency for the 
thermomechanical noise of an oscillator, illustrating two 
methods to measure Q from such a diagram. 73 

Figure 6-1.   Plot of noise vs. leg length ratio a for standard cantilever1 
in a bandwidth from 10 Hz to 1 kHz.  80 

Figure 6-2.   Force resolution as a function of doping depth.  82 

Figure 6-3.   The longitudinal piezoresistive coefficient as a function of 
boron concentration.  83 

Figure 6-4.   Minimum detectable force vs. doping concentration for 
standard cantilever1 assuming a maximum power 
dissipation of 2.5 mW. 85 

Figure 6-5.   Optimal doping depending on cantilever size and operation 
bandwidth.  86 

Figure 6-6.   Hooge noise parameter α as a function of anneal diffusion 
length Dτ . 88 

Figure 6-7.   Plot of sensitivity factor β  vs. anneal for cantilevers of 
various thickness. 90 

Figure 6-8.   Displacement resolution, as limited by 1/f noise and by 
Johnson noise for 10 µm wide cantilevers. 92 

Figure 7-1.   Schematic illustration of resonant beam AFM probe with 
stationary tip. 102 

Figure 7-2.   Illustration of an oscillator and tether for a planar 
fabrication process. 104 

Figure 7-3.   Calibrating an axial resonant probe. 108 

Figure 7-4.   SEM image of force probe. 110 



   

 

xv

Figure 7-5.   Photo of experimental set-up. 112 

Figure 7-6.   Vibrometer signal showing thermomechanical motion of 
the paddle and the probe tip. 114 

Figure 7-7.   Axial resonant probe with a double tether.  115 

Figure 7-8.   Amplitude detection of resonance shifts. 116 

Figure 7-9.   Force resolution of axial probe in vacuum and in air.  119 





   

 

1Chapter 1 

Chapter 1. Background and Motivation 

1.1. AFM background 

The overriding goal of this work is to improve the capabilities of the atomic force 

microscope1 (AFM) and AFM-based sensors by advancing the force detection capabilities 

of piezoresistive cantilever probes.  A brief description of the AFM and of piezoresistors 

is provided by way of introduction. 

AFM imaging modes 

The atomic force microscope uses a micromachined cantilever probe to measure 

forces and displacements with nanometer precision and sub-nano-Newton force 

resolution.  In its typical configuration, a micromachined silicon or silicon nitride 

cantilever with an atomically sharp tip is mounted on a piezoelectric actuator.  The 

actuator allows positioning and scanning of the tip over 10s to 100s of microns with sub-

nanometer resolution, and is used to raster scan the tip across the surface.  Forces on the 

tip that cause deflection of the cantilever can be measured to create an image of the 

surface. 

To measure cantilever deflections, a laser is reflected off the end of the beam into a 

position sensitive photodetector, as illustrated in Figure 1-1.  Flexing of the cantilever 

results in motion of the reflected laser spot, which is measured by the photodetector.  In 

the most common imaging mode, a feedback loop is closed around the actuator so that a 

predetermined deflection is constantly maintained by adjusting the cantilever height as it 

scans across topographical features. 



   

 

2 Chapter 1 

 

 Figure 1-1.  Schematic of atomic force microscope with optical lever detection. 

The primary advantage of the AFM as an imaging tool is that it does not suffer from 

the diffraction limitations of optical or scanning electron microscopes.  Such wave-based 

microscopes are generally limited to a resolution of the same order as the imaging 

wavelength.  This impressive capability has been convincingly displayed by atomic 

resolution images of non-conducting crystals2, an example of which is shown in Figure 

1-2.   

For softer samples, such as biological materials in liquid, resolution is not as high, 

due to deformation of the sample by the nano-Newton forces exerted by the cantilever 

tip.  Substantial improvements have been achieved using tapping mode AFM3, but atomic 

resolution is not yet possible. 
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Figure 1-2.  (a) 5 nm contact mode atomic resolution AFM image of mica.  
Image/photo taken with NanoScope® SPM, courtesy Digital Instruments, Veeco 
Metrology Group, Santa Barbara ,CA. (b) 252 nm tapping mode AFM image of 
an individual human transcription factor 2: DNA complex. Clearly resolved are 
the protein: protein interactions of two transcription factor proteins which 
facilitate the looping of the DNA.  Image taken with NanoScope® SPM 
courtesy of Bustamante Lab, Institute of Molecular Biology, University of 
Oregon, Eugene.  

AFM force curve mode 

The AFM can also be used to measure forces as a function of cantilever distance from 

a single point on the surface4.  Again, by measuring the position of a reflected laser beam, 

the deflection of the cantilever can be plotted as a function of distance to the surface.  If 

the cantilever spring constant is known, this deflection can be translated into a force. A 

conceptualized typical force curve is shown in Figure 1-3. 
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Figure 1-3.  Schematic illustration of a force curve.  In position (A) the 
cantilever is far from the surface and experiences negligible attractive force. As 
it approaches, the cantilever is bent towards the surface, but is not yet in contact 
(B).  At point (C), the cantilever snaps down onto the surface.  At point D, the 
cantilever is in contact with the surface, but has zero deflection.  Further motion 
down and the repulsive forces bend the cantilever back (E).  Upon retraction 
from the surface, the cantilever snaps free at point (F). 

Such force curves have recently been used to measure intermolecular forces of single 

macromolecules such as DNA and proteins as they are unfolded or separated by a 

cantilever tip5-7.  The forces to be measured in these experiments typically range in the 

100s of pico-Newtons up to a few nano-Newtons.  Where better force resolution is 

required, optical tweezers are often used, but at the expense of temporal resolution. 
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  Optical tweezers trap a micron-sized bead in a soft potential gradient (~10-5 N/m) 

established by photon pressure from a laser8. The motion of the bead can be measured 

with a photodetector, so if the gradient strength is known, the forces that caused the 

motion can be inferred.  Optical tweezers are limited to operation in liquid, and although 

the force resolution can be under a pico-Newton, the bandwidth is limited to less than one 

kilohertz and the maximum applied forces are in the 10s of pico-Newtons. 

The force resolution of a typical AFM is ~100 pN in a 1 kHz bandwidth9, although 

this can be improved to 10s of pico-Newtons in a well-controlled environment.  The force 

to break individual hydrogen bonds has been roughly measured at about 5 pN10, which is 

of the same order as the van der Waals forces between two atoms 11.  The capabilities of 

the AFM are tantalizingly close to allowing measurement of these fundamental force 

interactions with unprecedented bandwidth.  The prospect of measuring the force 

interactions of biological macromolecules in their actual environment is particularly 

enticing.  As a context to discuss the probe issues in such measurements, consider the 

following experiment, undertaken in collaboration with Dr. Colton and his group at the 

Naval Research Laboratory (NRL). 

Unzipping DNA 

The experimental objective was to measure the forces of the individual bonds that 

hold the two strands of double stranded DNA together, with a possible commercial 

application as a sequencing tool. 

In one possible configuration, single stranded DNA is bound onto a substrate at the 5′ 

end, as illustrated in Figure 1-4.  The complementary strand is then bound to a cantilever 

at the 3′ end.   Complementary DNA binds such that the 5′ end of one strand is matched 

to the 3′ end of the other.  When the cantilever is brought close to the surface the two 

strands bind together in the usual double helix.  Pulling the cantilever away unzips the 
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DNA, sequentially breaking the complementary base-pair bonds.  If the cantilever has 

single pico-Newton force resolution and tens to hundreds of kilohertz bandwidth in 

solution, it should be able to resolve the difference between the two hydrogen bonds 

which hold together an adenine-thymine (A-T) pair and the three hydrogen bonds which 

hold together a cytosine-guanine (C-G) pair.  There may also be additional force 

variations due to interactions with neighboring bases along the length of the chain, 

potentially allowing full determination of the sequence.  The bandwidth requirements for 

this experiment are approximately two orders of magnitude greater than those of most 

AFM measurements.  Pico-Newton force resolution has not been achieved with such 

bandwidth. 

T
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Figure 1-4.  Unzipping DNA with an AFM cantilever.  As the cantilever is 
retracted from the surface, the base-pair bonds rupture sequentially.  The G-C 
bonds are held together with 3 hydrogen bonds, which should enable them to be 
distinguished from the A -T bonds which only have two hydrogen bonds. 
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A version of this experiment has since been completed by other researchers using a 

glass pipette as an extremely soft cantilever10.  Forces were calculated by using a video 

camera to measure the displacement of a bead at the tip of a thin pipette.  This system 

provided a force detector with high resolution (<1 pN) but low-bandwidth (probably 

under 10 Hz).  Their results showed distinction between A-T-rich regions and C-G-rich 

regions, with separation forces in the 10-15 pN range, but could not resolve individual 

bond rupture events, perhaps due to the stored energy in such a soft cantilever (see 

section 2.2). 

The first necessity for this experiment is a cantilever that meets the force resolution 

and bandwidth requirements.  The flexibility of the cantilever determines how much 

bending occurs for a given force, and its resonance sets the frequency at which the 

measured forces become mechanically attenuated.  Since the resonance is determined by 

the square root of the spring constant over the mass, the only way to increase both 

bandwidth and force sensitivity is to make thinner cantilevers (<0.1µm) for a low spring 

constant and shorter (<50µm), narrow (<10µm) cantilevers for low mass.  An example of 

a custom cantilever I constructed for this application is shown in Figure 1-5.  To further 

reduce mass, the cantilever is tipless, and an array of tips is instead fabricated on the 

surface to be probed.  Constructing the tips on the surface rather than the cantilever gives 

the added advantage that if a tip becomes damaged, the measurement can be shifted to 

another tip without replacing the cantilever12. 
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Figure 1-5. 50 µm × 0.1 µm tipless silicon nitride cantilevers with 5 µm paddle.   

The main difficulty for a cantilever this size is in getting enough reflected laser light.  

The laser spot of a commercial AFM is about 30 µm, so not much light is reflected.  Even 

with the addition of a 5 µm diameter paddle at the cantilever end, less than 5% of the 

total light is reflected from the cantilever.  Furthermore, silicon nitride is fairly 

transparent, with transmittance of red lasers generally in excess of 60%.  These two 

factors, but principally the former, result in a small reflected signal which is 

overwhelmed by the rest of the laser light reflecting back off the sample surface. 

The reflectivity of the cantilever can be improved by coating the end of the paddle 

with a thin metal layer, as was done on a later generation of devices.  The problem of the 

paddle size, however, can only be addressed by focusing the laser to a smaller spot size.  

Unfortunately, a smaller spot size means a shorter focal length, and a rapidly diverging 

reflected beam.  This in turn means that the photo-detector must be quite close to the 

cantilever, so for a given cantilever deflection the laser spot in the detector does not move 

as far.  Although the properties of the cantilevers themselves were promising, minor 
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modifications of the optics of a commercial AFM at the NRL were insufficient to achieve 

the necessary performance. 

Other researchers are working to take real time images of biological processes such as 

DNA transcription13, and facing similar limitations in force resolution and bandwidth.  

They too have constructed optical cantilevers under 10 µm wide14, and promising efforts 

are underway to construct customized AFMs with optics specially designed optics15.  

There may be an easier alternative, however, that lies outside optical detection. 

1.2. Piezoresistor background 

Piezoresistive sensors have been around for over 40 years16, and are widely used in 

commercial pressure sensors and accelerometers17-19.  A stretched wire grows longer and 

thinner, which increases its resistance from geometry alone.  Any conducting material can 

act as a strain gauge by this geometrical mechanism, but piezoresistive sensing usually 

refers specifically to strain gauges in semiconductors.  The electrical properties of some 

doped semiconductors respond to stress with resistance changes over 100 times greater 

than those attributable to geometric changes alone. 

Piezoresistors in silicon are created by introducing dopant atoms to create a 

conducting path.  When the silicon experiences stress, and therefore strain, the lattice 

spacing between the atoms changes, affecting the band-gap energy.  This band-gap 

change either increases or decreases the number of available carriers in the doped region, 

which is measured as a change in resistance20.   

To account for more subtle piezoresistive effects, the many-valley model of Herring is 

used21.  The “valleys” of this model represent the possible combination of electron wave 

numbers by which an electron can enter the conduction band.  Although the energy 

valleys themselves are anisotropic, for an unstressed silicon lattice the net effect of all the 
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valleys is isotropic conductivity.  Under anisotropic stress, electrons move between the 

valleys, increasing conductivity in some directions and decreasing it in others.  This 

model works well in n-type silicon, but is not as successful for p-type silicon20. 

The most commonly exploited piezoresistive coefficient is longitudinal, where the 

current flow and stress are parallel.  There are also transverse and shear piezoresistive 

effects, however, which can have substantial effects21.  In the transverse piezoresistive 

effect the current is normal to a tensile stress.  The shear piezoresistive constants apply to 

piezoresistance arising from shear stresses.  In the remainder of this work, only the 

longitudinal coefficient will be considered. 

The first piezoresistive AFM cantilever was created at Stanford University by Marco 

Tortonese in 199122.  By implanting boron, a conducting path was created in the surface 

of the silicon at the base of a cantilever.  Under an applied voltage bias, current flowed 

out one leg of the probe, and back the other as illustrated in Figure 1-6.  For a downward 

flexing of the cantilever, tensile stress in the top layer results in an increase in resistance, 

and conversely when the beam is bent upwards. 
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Figure 1-6.  Schematic of a piezoresistive cantilever.  The top layer is 
conducting due to a boron-doped layer.  Bias on the bond pads causes current to 
flow out one leg and back on the other, around a physical split between the two. 

Integration of a sensing element into the cantilever eliminates the need for the 

external laser and detector used in most AFMs.  This removes the delicate step of 

aligning the laser to the cantilever and photodetector which usually precedes an AFM 

measurement, a simplification which expands the potential of the AFM for use in difficult 

environments such as ultrahigh vacuum chambers23.  Integrated sensing also facilitates 

the use of large cantilever arrays24, or sensors designed for portability and robustness25.  

Example applications are given in the next section. 

A further advantage of piezoresistors is that the minimum size constraint associated 

with optical cantilevers is avoided.  Reducing cantilever size allows for a simultaneous 

increase in bandwidth and decrease in the spring constant, key advances for increased 

performance. 

Despite these advantages, however, most AFMs do not use piezoresistive detection, 

mainly because piezoresistors do not achieve the force resolution of optically detected 

cantilevers.  With commercially available piezoresistive cantilevers, a user generally 
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gives up an order of magnitude of force resolution as a price for the convenience.  As will 

be discussed later at some length, however, there are piezoresistor design and processing 

improvements that can make the performance of the two types of cantilevers comparable. 

Piezoresistive cantilever applications 

Most current piezoresistive cantilever applications are focused on developing large 

cantilever arrays, and cantilevers with high bandwidth.  A major criticism of AFM-based 

imaging is that the serial nature of reading with a single tip makes it too slow for fast, 

large area scans. This concern has been amply answered by Minne et al., who have 

shown impressive high-speed large-area imaging with arrays of 50 or more cantilevers26.  

Optical measurement of the displacement of many cantilevers would either require many 

lasers and detectors, or multiplexing of a few lasers and detectors.  In either case, the 

precise laser and detector alignment required for each cantilever makes this approach 

difficult. Cantilevers with built in diffraction gratings have been developed which ease 

laser alignment27, but integrated piezoresistive sensors remain more convenient. 

 With the ability to build an array of high-speed cantilevers comes several important 

commercial applications.  In addition to high resolution imaging, as for semiconductor 

diagnostic purposes, AFM cantilevers can be used to write patterned photoresist or oxide 

mask lines for integrated circuit lithography28.  The pressure for ever- smaller circuit 

features makes this a potential successor to current lithography technologies. 

A similar pressure for smaller features also exists in the data storage industry.  

Magnetic bits can only be packed so closely together before they reach the paramagnetic 

limit and begin to flip spontaneously at room temperature.  This limit is expected to occur 

at data density of about 100 Gbit/in2.  Small physical pits or bumps can be written and 

detected with AFM cantilevers to store data at densities above 500 gigabits per square 
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inch, and such AFM-based techniques are currently under investigation at IBM research 

labs in Almaden29 and Zurich30. 

Piezoresistive cantilevers are also useful when portable, low cost individual sensors 

are required.  Researchers at the Oak Ridge National Laboratory are developing sensors 

for humidity, mass, heat and chemical reactions based on cantilevers with integrated 

sensors31.  Heat in a bimorph causes bending, and mass changes affect the resonant 

frequency.  For portability and ease of use, laser interrogation is again avoided.   These 

types of measurements can potentially be combined in an array of sensors to create an 

electronic nose. 

All of these applications benefit from improved cantilevers.  Increased cantilever 

resolution results in images of smaller features, faster scanning speeds, reading and 

writing of smaller data pits, and increased sensitivity chemical sensors.  There is a 

ubiquitous trade-off between the smallest measurable signals and the time of 

measurement, so even for applications where current cantilevers suffice, improved 

cantilevers allow faster measurements.  If enough advances can be made, piezoresistors 

may also hold promise for scientific AFM studies beyond the capabilities of the current 

optically detected devices. How these improvements can be achieved is the subject of the 

remainder of this work. 
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Chapter 2. Fundamental parameters of cantilever 
sensors 

The goal of any sensor is to measure signals of interest in the presence of noise, and 

to do so on a time scale commensurate with the signal.  Furthermore, the sensor cannot be 

too obtrusive during the measurement, and thereby affect the signals or change the 

environment.   

A large response to a small signal is clearly beneficial to the performance of a sensor, 

and is measured as the sensitivity.  The output without an input signal is the noise.  

Resolution is defined as the noise divided by the sensitivity, and is a measure of the 

smallest resolvable signal.  It should therefore be as small a number as possible.  The 

frequency range of the signals that can be measured is the bandwidth, and is related to the 

speed of the sensor, as well as the sampling rate and the total length of the measurement.  

Finally, for an AFM cantilever, the spring constant of the beam will determine how it 

interacts with its environment. 

These important terms−sensitivity, noise, resolution, bandwidth and spring 

constant−will each be explained in more detail below. 

2.1. Cantilever design parameters 

Sensitivity 

For transducers that convert an input signal into an electrical signal, the sensitivity 

determines how large the output voltage is given a particular input.  For a force sensor, it 

is therefore usually quoted in units of volts per Newton [V/N], and for displacement 

sensors in volts per meter [V/m].  In a piezoresistor, a change is resistance is usually 
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converted into a voltage by using a Wheatstone bridge followed by an instrumentation 

amplifier, as shown in Figure 2-1. 

F

gain

VB

Vout

 

Figure 2-1.  Piezoresistive cantilever in a Wheatstone bridge circuit.  The 
piezoresistor is half of a voltage divider, so as the resistance changes, the output 
voltage varies.  The other half of the bridge is another voltage divider, balanced 
with a variable resistor to null out the signal when there is no input force.  An 
instrumentation amplifier then provides gain. 

It is evident from the figure that the sensitivity can be made arbitrarily large by 

varying the gain of the instrumentation amplifier.  For this reason, a sensitivity quotation 

by itself in volts per signal contains little information.  Sensitivity is therefore sometimes 

given as a fractional change per signal, such as ∆R/R per Newton [N-1] for the change in 

resistance of a piezoresistive force sensor.  This type of sensitivity is often quoted as parts 

per million, where 10-6 N-1 is equivalent to 1 ppm/N.  While sensitivity can be a useful 

metric, the real parameter of interest in most applications is resolution.  To determine 

resolution the noise must be known. 
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Bandwidth 

The range of frequencies that can be measured is known as the bandwidth of the 

measurement.  The upper limit may be set with electronic filtering, or it may be set by the 

sampling rate of the measurement, the bandwidth of the amplifiers used, the resonant 

frequency of the of the cantilever, or capacitive losses in the wires, among other 

possibilities.  The low end of the frequency bandwidth is usually set by the length of the 

measurement, or again by electronic filtering.  For a measurement that only lasts one 

second, a 1 mHz signal will appear to be unchanging. 

The mechanical response of a cantilever is attenuated above its resonance, so the 

maximum measurement bandwidth for a cantilever is usually set by its resonant 

frequency.  The choice of the bandwidth often determines the dominant source of noise, 

and will therefore have a great impact on the probe design.  If low frequency signals are 

of primary interest, high frequency noise can be neglected in the design.   

Noise 

For the circuit in Figure 2-1, noise is any voltage Vout that is present when there is no 

force signal applied to the cantilever.  A simple measurement of the noise would be to 

square Vout, average it over time, and take the square root.  If this root-mean-square (rms) 

value were 1 mV, then 1 mV signals are considered the lower limit on what can be 

measured. 

It is usually beneficial, however, to consider the frequency distribution of the noise, 

computed by taking a Fourier transform of the noise waveform.  If there is noise at 

frequencies that are not of interest to the measurement, they can be electronically filtered, 

effectively improving the signal to noise ratio.  Simulated example waveforms are shown 

in Figure 2-2. 
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Figure 2-2.  Matlab simulated signals in the presence of white noise.  (a) shows 
a 100 mVrms signal at 10 Hz in a 10 kHz measurement bandwidth. (b) shows 
the same waveform after a filter at 100 Hz.  (c) and (d) show the power spectral 
density of the waveforms. 

Because the total noise depends on the measurement bandwidth, the power spectral 

density (PSD) [V2/Hz] of the noise is often quoted.  The PSD is a measure of the signal 

power in a given 1 Hz frequency band.  Although V2 are not units of power [W], it is 

assumed to be the power dissipated in a 1 Ω resistor.  To get the total power of two 

incoherent sine waves, the squared amplitudes must be added.  By summing the PSD at 

each frequency over the bandwidth, the total noise can be computed.  As an example, the 

white noise in Figure 2-2 has power spectral density of 6⋅10-7 V2/Hz, so the unfiltered 

noise in a 10 kHz bandwidth had a total noise power of (6⋅10-7 V2/Hz)⋅(105 Hz) = 0.06 V2 

or 0.24V.  After filtering to a 100 Hz bandwidth, the noise is 0.008 V. 

In addition to simply filtering a waveform to remove noise, it is sometimes also 

possible to remove noise by using a lock-in amplifier.  A lock-in amplifier multiplies the 

incoming waveform by a reference sine wave.  Consider a sine component of the signal 
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with amplitude A1 at frequency ω1.  If the lock-in reference signal had unit amplitude and 

frequency f0, then the output signal is given by 
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Half the power of the frequency components of the signal waveform near f0 will be 

shifted to DC, and the other half shifted to 2f0.  The DC components can then be filtered 

with a low-pass filter of bandwidth B.  This is effectively the same as having a narrow 

band pass filter of bandwidth ±B centered at frequency f0. 

In addition to use as a tracking band pass filter, the multiplier function of a lock-in 

can also be used to move a low frequency signal up to a higher frequency, and back, if 

desired. This technique is used in “chopped” op-amps to circumvent low frequency noise.  

Chopping a signal to remove noise is only possible if the signal can be frequency shifted 

before introduction of the noise.  As an example, low frequency resistance drift of a 

piezoresistor cannot be removed by chopping, because the drift noise is introduced at the 

same point and time as the signal, and the two cannot be separated. 

Resolution 

The resolution of the probe determines the minimum force or displacement that can 

be measured.  Resolution is defined as the noise divided by the sensitivity.  The total 

amount of noise is dependent on the bandwidth of the measurement, since filters can 

remove noise outside the bandwidth of interest.  As a result, resolution should be quoted 

as the minimum detectable force or displacement in a given bandwidth.  This is often 

given as N/ Hz  or m/ Hz  for measurements in a 1 Hz bandwidth.  If the noise is 

constant as a function of frequency, such a measure is sufficient to compute the resolution 

in any bandwidth.  If the noise level varies irregularly with frequency, however, the total 
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resolution should be given for the relevant bandwidth, as in 5 nN in a bandwidth from 10 

Hz to 1 kHz. 

Spring constant 

The spring constant, k [N/m], of a cantilever beam is also critical to the usefulness of 

the sensor.  In the discussion of section 3.3, it will be shown that increasing the stiffness 

of a cantilever improves its displacement sensitivity, while decreasing the stiffness 

improves the force sensitivity.  This observation by itself would suggest a short, thick, 

stiff cantilever for displacement measurements such as surface imaging, and a long, thin, 

soft cantilever for force measurements.  There are other restrictions on the cantilever 

stiffness, however. 

The disadvantages of an extremely stiff cantilever are readily apparent.  For contact 

AFM imaging, a stiff cantilever will exert large forces that may damage the sample or 

result in tip wear.  For imaging solids, acceptable forces are in the 1-10 nano-Newton 

range.  For imaging biological samples, the forces must be below ~0.1 nN.  The 

disadvantages of a soft cantilever as a force sensor are somewhat subtler, and will be 

discussed in the section 2.2. 

Other parameters 

There are many other parameters used to specify sensor performance, such as 

linearity, dynamic range, accuracy and drift.  Linearity and dynamic range are not usually 

discussed for AFM sensors because the probes are typically used in a feedback mode 

where the goal is to keep a constant force on the cantilever.  For force measurements, 

they should be important figures of merit, but the signals usually involve such small 

displacements that linearity is assumed.  The signals are also typically so close to the 

noise limits of the sensor that both concerns are secondary to the need for resolution.  As 
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AFM force curve measurements become a more widespread and rigorous scientific tool, 

dynamic range and linearity should gain importance as figures of merit.   

Drift is simply a measure of the noise in a particular, low frequency, bandwidth, and 

should therefore be superfluous if resolution is quoted correctly.  

Accuracy is rarely mentioned for AFM force measurements.  AFMs measure 

displacement accurately, and the spring constant of the cantilever is used to infer the 

forces.  The accuracy to which the spring constant is known is usually the limiting factor 

in the accuracy of a force measurement.  Although several approaches have been devised, 

there is still no convenient way to calibrate the stiffness of an AFM probe and get results 

with much better than 20 percent accuracy.  The displacement resolution of an AFM 

probe can be accurately determined by applying known displacements to the probe.  

These calibration displacements can be applied with a piezo-electric actuator that has 

been previously calibrated using another known sensor, such as a laser interferometer.  To 

calibrate a force sensor, however, the spring constant must be known.  This allows the 

conversion of known displacements into known forces. 

There are numerous methods that have been used to compute or measure cantilever 

spring constants.  The most common is simply to make a good measurement of the 

cantilever dimensions and compute the theoretical spring constant.  The spring constant 

varies as the cube of the thickness and length, so measurement inaccuracies result in large 

spring constant errors.  The largest error is typically associated with the thickness 

measurement.  A measurement of the resonant frequency can be used to get another 

estimate of the thickness, which helps with the accuracy of this technique1. 

Alternatively, known masses can be applied to the end of the beam, and the resulting 

resonance shifts measured2.  This method can be accurate if the masses are accurately 

known and their location on the beam is well determined, but it primarily suffers from the 
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inconvenience of the method.  Micro-manipulating 10 µm-diameter beads is a time 

consuming task, and likely as not to result in a broken cantilever. 

If the spring constant of a single cantilever is accurately established, it can 

theoretically be then used to apply known forces to other cantilevers and thereby calibrate 

them.  It is surprisingly difficult to repeatably calibrate a second cantilever in this manner, 

however.  Slight tilt in the relative orientation of the beams and lateral motion during the 

loading apply buckling loads that introduce substantial errors. 

A final technique is to make use of the intrinsic thermal noise of the cantilever.  There 

is Brownian motion in any mass-spring system that has an expectation value proportional 

to the temperature and one over the spring constant.  The spring constant can then be 

deduced from a measure of the thermomechanical displacement and the temperature.  The 

major difficulty with this approach is getting an accurate measure of the minute 

thermomechanical motion over a broad frequency range. 

2.2. Force instabilities 

Attractive force instabilities and probe stiffness 

The snap-in and snap-out of the cantilever force curve shown in Figure 1-3 results in 

a region in which the forces cannot be measured, fundamentally limiting the usefulness of 

the technique.  These instabilities arise when the attractive force gradient from the 

interaction with the surface exceeds the cantilever spring constant. 

The instability can be understood by looking at a static balance of forces.  The 

cantilever tip will be stationary when the restoring force from the flexing of the 

cantilever, F=kx, equals the attractive force from the surface.  As the cantilever base 

moves closer to the surface, the attractive force increases, causing further bending of the 

cantilever until equilibrium is again reached.  This bending of the cantilever moves the tip 
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still closer to the surface in turn increasing the attractive forces. If the situation arises 

where these surface forces are increasing faster than the restoring force of the flexing 

beam, the tip snaps down.  The rate at which the restoring force increases (dF/dx = k) is 

the spring constant. Therefore, when the attractive force gradient exceeds the spring 

constant, snap-down occurs.  A similar phenomena causes snap-in for electrostatic 

actuators commonly used in MEMS devices. 

Figure 2-3 illustrates the attractive forces from a Leonard-Jones potential of the form 

-Ad-6+Bd-12, where A and B are constants and d is the distance from the surface.  Typical 

values for A and B of single atoms are 10-77 J⋅m6 and 10-134 J⋅m12.3  A 0.01 N/m cantilever 

probing this interaction would snap in 0.67 nm from the surface at a force of 1 pN.  Upon 

retracting the cantilever it would snap free 0.39 nm from the surface at a force of 22 pN, 

and end up at a new equilibrium 2.3 nm from the surface.  In addition to this force vs. 

distance curve, for each position of the cantilever base a line of slope k can be plotted of 

the force versus distance due to the cantilever bending.  Two such contours are indicated, 

one at snap-in and one at snap out, where they are tangent to the surface potential force 

curve. 
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Figure 2-3.  Diagram of an attractive force potential versus distance with 
contours of the cantilever spring constant.  For an approach, point A indicates 
snap-in.  The forces then balance and achieve equilibrium at point B.  When 
retracting the cantilever snaps free at point C and comes to equilibrium at point 
D. 

The region between points A and C of this force potential cannot be mapped using 

this cantilever.  To fully map out this force potential requires a cantilever of stiffness 

greater than the maximum slope of the force potential. 

Although snap-out due to van der Waals forces can be observed, the most commonly 

observed snap-outs are the result of meniscus forces from condensation and other 

contaminants4.  The attractive force of the meniscus is usually 10-100 nN5. 

Force instabilities in molecular manipulation 

The instabilities described in the preceding section are well known to AFM users, but 

a less familiar variation of this problem exists for force measurements on 

macromolecules.  Consider again the DNA unzipping experiment described in section 

1.1, and diagrammed in Figure 1-4.  For the case of a strong bond followed by a weaker 

bond, force-gradient instabilities may prevent measurement of the weaker bond. 
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When measuring the first, strong bond, the cantilever will flex until the beam 

restoring force is great enough to break the bond.  The free end of the cantilever will then 

spring back until it either reaches zero deflection, or catches on the next bond in the 

sequence, a distance δ away.  If it catches a second bond before completely relaxing, the 

cantilever at this point exerts a force equal to the force of the first bond minus kδ.  If this 

remaining force is enough to break the second bond, the cantilever will simply rip 

through that bond as well, without recording it as a discrete event. 

For the DNA unzipping experiment discussed in Chapter 1, 10-15 pN forces were 

required to rupture the individual complementary strand bonds6.  According to these 

results, the A-T pair, composed of two hydrogen bonds, should rupture at ~10 pN, and the 

C-G pair, composed of three hydrogen bonds, at ~15 pN.  The spacing between the bond 

pairs in double-stranded DNA is 0.34 nm, which means that for unzipping the cantilever 

tip can move 0.68 nm before catching the next bond.  To measure a C-G followed by an 

A-T, then, the cantilever must have a spring constant of greater than 

5 pN/0.68 nm=0.007 N/m in order to stop on the weaker bond.  In other words, the spring 

constant of the beam must be greater than the force gradient between the two bonds. 

In fact, matters will be even worse than this, since the cantilever will have some 

inertia when it reaches the next bond.  Even if the cantilever has room to reach zero 

deflection before the next bond, for any quality factor greater than one it will have some 

overshoot that could rupture the subsequent bond.  To be certain that instabilities and 

dynamic effects are not affecting the measurement, the cantilever should ideally never 

deflect more than half the distance between bonds.  This criterion allows for maximum 

overshoot, so that as long as the oscillations are allowed to settle before the next event, 

each can be measured independently.  In the example of the previous paragraph, the 

cantilever could have a minimum spring constant of 15 pN/0.34 nm=0.04 N/m.  This type 

of instability will prevent researchers using soft devices such as thin pipettes or optical 
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tweezers from resolving all the individual bond ruptures when mechanically denaturing 

DNA. 

A major drawback to this type of approach for sequencing is that as the double helix 

becomes unzipped it acts as another spring attached to the end of the cantilever.  Now the 

net effective spring constant between the base of the cantilever, which is controlled, and 

the point where bonds are breaking is keff = (kcantilever
-1

 + kDNA strand
-1)-1.  It is this spring 

constant which will now set the unzipping instability point.  As the unzipped strand 

becomes longer, its spring constant decreases, thereby lowering the overall effective 

spring constant of the system.  The elasticity of the DNA will likely limit this type of 

sequencing to strands below one kilo-base-pair in length. 
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Chapter 3. Design for Sensitivity and Bandwidth 

In this chapter fundamental equations are derived which determine the sensitivity and 

the mechanical characteristics of the cantilever.  This derivation primarily indicates the 

relation between the stress in the beam and the distribution of the dopant, which in turn 

determines the current flow in the cantilever.  A similar set of equations was presented by 

Tortonese in his 1993 thesis1, and has been the basis for most cantilever designs since. 

Such designs, based purely on the goal of maximizing sensitivity within some 

mechanical constraints of spring constant and bandwidth, have the implicit assumption 

that the noise of the device will be largely unaffected by these design decisions.  As will 

be shown in Chapter 4, this assumption is invalid for some cases, but in many instances, 

design for maximum sensitivity does lead to substantial performance gains. 

3.1. Mechanical properties of a cantilever beam 

The spring constant, k, of a rectangular diving-board cantilever is given by 
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Ewtk = , (3.1) 

where w, l, and t, are the width, length and thickness of the beam, and E is the 

modulus of elasticity of the material.   For cubic crystals such as silicon, the modulus of 

elasticity depends on the crystal orientation according to2 

 ( )Γ−−−=−
442

1
121111

1 2 ssssE , (3.2) 

where 
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and γ1, γ2, and γ3 are the direction cosines between the axis of interest and the three 

standard crystal axes.  For example, the angle between the [110] direction and the x-axis 

is 45 degrees, so γ1 is √2/2.  For silicon, s11 is 0.77⋅1011 m2/N, s12 is –0.21⋅1011 m2/N and 

s44 is 1.25⋅1011 m2/N3.  The modulus of rigidity, G, can be calculated from the same 

coefficients according to 

 ( )Γ−−+=−
442

1
121144

1 4 ssssG , (3.4) 

The resulting Young’s moduli for silicon in the predominant crystallographic 

directions are given in Table 3-1.  Piezoresistive cantilevers are usually constructed on 

<100> wafers, so along the dominant strain axis the <110> value of 1.7 × 1011 N/m is 

used. 

 E (GPa) G (GPa) ρ (kg/m3) 

Si <100>  

Si <110> 

Si <111>  

166 

170 

190 

80 

62 

58 

2333 

Table 3-1.  Modulus of elasticity (E), modulus of rigidity (G) and density (ρ) for 
silicon and silicon nitride.  The values for the <100> and <111> are the 
extremes. 

The resonant frequency for a cantilever is4  

 

ρ
α

E
l
t

f n 20 =  (3.5) 

where ρ is the material density (2300 kg/m3 for silicon) and αn are coefficients for the 

various resonant modes.  For the fundamental mode, α1 = 1.01, so the fundamental 

resonance is often approximated without the α parameter.  The next resonant modes 

occur at α2 = 6.36, α3 = 17.81, and α4 = 34.90. 
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3.2. Stress distribution in a cantilevered beam 

When a transverse load F is applied to the end of a cantilever, as in Figure 3-2, the 

stress, σ, in the beam is proportional to the resulting moment M according to  

 
I

Mc
=σ , (3.6) 

where the bending moment M=F(l-y) and for a rectangular beam I=wt3/12.  The stress is 

then given as 

 F
wt

cyl
3

)(12 −
=σ . (3.7) 

For a beam loaded as shown, the top half of the is in tensile stress along the [110] 

direction, and the bottom half is in compression.  At the center of the beam is a layer 

called the neutral axis, which experiences zero stress.  To first order approximation, the 

stress distribution increases linearly from the tip of the cantilever to the base, and varies 

linearly across the beam thickness.  Halfway through the thickness of the beam, there is a 

point of zero stress, where there is a transition from a tensile stress to a compressive one.  

The plane of these points along the length of the cantilever is called the neutral axis.  The 

variable c denotes the distance from the neutral axis. 

As can be seen in Figure 3-1, equation (3.12) breaks down near stress concentrators 

such as sharp corners, or notches in the beam.  The stress also extends beyond the base of 

the cantilever into the substrate.  For many analyses, including this one, the 

approximation of linearly varying stress is sufficient.  According to equation (3.7), the 

stress increases linearly from the end of the cantilever to the base, and linearly from the 

neutral axis out to the surface. 
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Figure 3-1.   Finite element model showing the stress distribution in a cantilever 
beam.  The stress increases linearly along the length from the tip to the base, and 
also linearly across the thickness.  The bottom half is  in compression and the top 
half in tension. 

A triangular beam could be used instead of the rectangular beam shown, and would 

have the advantage that the width, and hence the area moment of inertia, I, also increases 

linearly from the tip to the base.  Such a beam would be no more likely to fail under a 

load, would have a constant stress along its length, and would have a higher resonant 

frequency.  Because most piezoresistive cantilevers have been rectangular, a rectangular 

beam will be used in the remainder of this treatment. 

3.3. The piezoresistive coefficient 

To compute the sensitivity of a piezoresistor, expressed as ∆R/R per Newton, for a 

cantilever with arbitrary dopant profile, the effects of the stress and dopant distribution 

must be analyzed.  The stress varies across both the thickness and length of the beam, and 

the dopant profile varies across the thickness, so a complete derivation of the net effect 

must involve integration along both these axis. 

A piezoresistor with cubic symmetry responds to stress as 
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σπ

ρ
ρ

l=
∆ , (3.8) 

where σ is the resistivity and π l is the longitudinal piezoresistive coefficient, along the 

direction of the tensile stress.  There also exists a transverse piezoresistive coefficient, 

usually denoted as π t.  Analogously to the derivation of the modulus of elasticity, the 

piezoresistive coefficients are determined by π11, π12, and π44.  The direction cosines are 

again used to determine π l and π t in any other direction, according to 

 ( )Γ−−−= 44121111 2 πππππ l , (3.9) 

and 

 ( )Γ−−−= 44121112 2 πππππ t . (3.10) 

 Coefficients for p-type and n-type silicon are given in Table 3-2.  These numbers 

are given for low doping levels, and therefore represent the maximum coefficients.  For a 

[100] wafer, the maximum piezoresistive coefficient occurs in the [110] direction, where 

Γ is ¼.  This results in a π l for p-type silicon along the [110] direction of 71.8⋅1011 m2/N.  

Although higher values of π l can be obtained with n-type silicon, the high piezoresistive 

coefficient occurs in directions that are inconvenient from a fabrication point of view.  A 

graphical representation of the piezoresistive coefficients is available in the work of 

Kanda5. 
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Table 3-2.  Piezoresistive coefficients for n-type and p-type silicon and 
germanium6. 

3.4. Piezoresistor sensitivity 

Subsequent calculations will assume a cantilever with the design shown in Figure 3-2. 

The total thickness of the cantilever is t.  The path of the piezoresistor is defined by 

splitting the cantilever base into two legs of length lleg that extend some fraction of the 

total length l.  The gap between the legs is assumed to be of negligible width, so that the 

total cantilever width is w and the legs are of width w/2.  A summary of all the variables 

used in this paper can be found in appendix A. 

 π 11 [1011 m2/N] π 12 [1011 m2/N] π 44 [1011 m2/N] 

n-type silicon 
(11.7 Ω -cm) -102.2 53.4 -13.6 

p-type silicon 
(7.8 Ω -cm) 6.6 -1.1 138.1 

n-type germanium 
(9.9 Ω -cm) -4.7 -5.0 -137.9 

p-type germanium 
(15 Ω -cm) -10.6 5.0 46.5 
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Figure 3-2.  Diagram of integration variables and cantilever dimensions. 

First consider a thin horizontal slice dc of the cantilever, where c is the distance from 

the neutral axis of the beam, as shown in Figure 3-2.  For an infinitesimally thin slice, the 

stress and dopant are constant as a function of thickness.  A differential length dy of thin 

vertical slice has resistance of 

  
dcw
dy

dRslice

ρ
= , (3.11) 

where ρ is the is the resistivity.  The resistance from each vertical slice is added in 

series, giving the resistance for a full horizontal slice is 

 

dcw
l2

dcw
dy

2R leg
l

0
slice

leg ρρ
== ∫ , (3.12) 

with the factor of two entering because there are two legs.  The resistance 

contribution where the current changes direction to the return leg is neglected. 

The analogous calculation for ∆Rslice is where the piezoresistive effect enters.  When 

stressed, the resistance in this element varies according to equation (3.8) as 
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 ( )
dcw
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dRslice

ρ∆
=∆ . (3.13) 

The change in resistance of the full slice is therefore 
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which when integrated gives 
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(3.15) 

For a single slice, then, the sensitivity ∆R/R is 
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R
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=

∆ π
. (3.16) 

The maximum possible signal occurs at the surface, when c=t/2.  If the doped region 

exists only at the surface, there are no other resistance contributions and the sensitivity is 

 
F

wt

2ll6

R
R

2

legl )( −
=∆ π

. (3.17) 

By including the spring constant of the cantilever, and the relation F=kx, a similar 

equation can written for the maximum sensitivity to a displacement, 

 ( )
x

l2

2llEt3

R
R

3

legl −
=

∆ π
. (3.18)

The change is resistance is usually measured by making the piezoresistor one quarter 

of a Wheatstone bridge, so the measured output is Vout= (∆R/R)(Vbias/4). 
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3.5. Non-ideal dopant distributions 

Equations (3.17) and (3.18) are simplified by the assumption of only measuring the 

stress at the surface. For a better model of the total fractional resistance change, 

Tortonese formulated an efficiency factor β  to be inserted in the numerator of the 

sensitivity equations1.  β  is computed as the ratio of the complete ∆R/R, which includes 

the distribution of the stress and dopant, to a simplified version in which the stress is 

assumed to be at the surface value.  As such the efficiency factor which ranges between 0 

and 1. 

To compute the full sensitivity equations (3.12) and (3.14) can be integrated to sum 

the contributions of each horizontal slice across the beam thickness.  Since these are 

resistors adding in parallel, it is convenient to convert to conductance to carry out the 

integration.  The conductance G is defined as 1/R, and it is easily shown that 

 
G
G

R
R ∆

−=
∆

. (3.19)

The total conductance is 
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where the resistivity now varies in across the thickness depending on the dopant profile, 

so the integral cannot be solved in a closed form.   

The change in conductance can be rewritten from equation (3.19) as 

 
2R
R

G
∆

−=∆ , (3.21)

so the contribution of a single slice is 
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Finally the full sensitivity is 
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This form is generally too complex to be of use for design calculations, hence the 

factor β .  Comparing this with the simplified equation assuming maximum surface stress, 

and accounting for the difference with β  yields 

 ( ) ( )

( ) ( ) dcppp

dccppp

t t

t l

t

t l

∫
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−

−= 2

2

2

22

µπ

µπ
β , (3.24)

where the resistivity has been expanded according to ρ=(π lµq)-1. Both the 

piezoresistive coefficient, π l, and the hole mobility, µ, are functions of the dopant 

concentration p. 

The advantage of thin piezoresistors 

Of the key performance parameters, sensitivity, resonant frequency and spring 

constant all improve with reduced cantilever thickness.  From the simplified force 

sensitivity equation (3.17), it is evident that reducing the thickness will improve the 

sensitivity, but decreasing the thickness without adjusting the length will decrease the 

spring constant, so this by itself is not a complete metric. 
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Consider the effect of a thickness reduction while maintaining a fixed spring constant. 

From equation (3.1) the spring constant is proportional to t3/l3, so t and l can be reduced 

together without affecting the stiffness. The force sensitivity from equation (3.17) varies 

as l/t2, so it is evident that a thinner, shorter cantilever results in a net force sensitivity 

improvement.  The spring constant is usually specified by the demands of the application, 

so optimizing for force resolution given k also optimizes for displacement resolution. 

The bandwidth also scales favorably with reductions in thickness.  The resonant 

frequency is proportional to t/l2 from equation (3.5), so again, if the thickness and length 

are reduced together, the spring constant remains unchanged while the resonant 

frequency increases. 

As an example, a cantilever for high-speed AFM imaging may require a bandwidth 

over 100 kHz and a spring constant below 0.01 N/m to minimize sample damage.  From 

equation (3.5) for the resonant frequency, a minimum value for t/l2 is specified.  For a 

practical minimum width of 10 µm, equation (3.1) for the spring constants then applies a 

second constraint to the ration of t/l.  To satisfy these requirements the cantilever 

thickness must be below 0.2 µm. 

Figure 3-3 illustrates the displacement sensitivity versus thickness for lines of 

constant spring constant, as well as lines of constant resonant frequency.  For this case, 

the legs are assumed to extend half of the total cantilever length, with the bias voltage of 

5 V.  To read force sensitivity from this plot, simply multiply the displacement sensitivity 

by the spring constant. The width of the cantilever in the plot is fixed at 10 µm, and the 

length is adjusted to achieve the desired spring constant or resonance.  The design space 

of the cantilever in the previous example is indicated as the shaded region of the figure. 
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Figure 3-3.  Displacement sensitivity vs. thickness for a 10 µm wide cantilever 
with given k  or f.  The horizontal lines are contours of constant resonant 
frequency.  The sloped lines are contours of constant stiffness.  The shaded 
region illustrates the design space for cantilevers with over 100 kHz bandwidth 
and under 0.01 N/m stiffness. 

One drawback to the use of small cantilevers is the difficulty in approaching a surface 

without crashing the corners of the cantilever chip, as illustrated in Figure 3-4.  Such a 

problem can be alleviated by piggybacking the cantilever on a stiff extension.  If a 50 

µm-long 0.2 µm-thick cantilever extends from the end of a 50 µm-long 2 µm-thick 

support cantilever, 99.8% of the deflection will occur in the thin cantilever.  The effective 

length of the cantilever is therefore doubled, while the sensitivity is essentially 

unchanged. 
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(a)  

(b)  

Figure 3-4.  Angular alignment difficulties with short cantilevers.  (a) A short 
cantilever can have difficulty accessing a surface because slight angular tilt of 
the chip may cause the chip corner to crash.  This problem is alleviated in (b) by 
piggy-backing the short cantilever on a longer, thicker substrate. 

3.6. Summary 

This chapter described the fundamental equations that describe the mechanical 

characteristics of the beam and the sensitivity of the piezoresistor to applied forces.  From 

these equations, it is evident that thinner, smaller piezoresistors are the route to improved 

characteristics.  
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Chapter 4. Constructing Ultrathin Piezoresisitve 
Cantilevers 

It was established in Chapter 3 that thin cantilevers provide increased sensitivity and 

bandwidth for a given spring constant.  The ability to construct thin piezoresistive 

cantilevers will expand the design space in ways that are physically impossible with 

thicker devices.  In this chapter, the standard fabrication techniques for piezoresistive 

cantilevers will be introduced, and then modified to allow thinner devices.  Data will be 

presented on actual devices under 1000 Å thick. 

4.1. Standard Fabrication Procedure 

The fabrication of piezoresistive cantilevers generally still follows the technique 

developed by Tortonese et al.  A cantilever-shape is defined on the top layer of a silicon-

on-insulator (SOI) wafer.  It is then doped with boron to create a p-type conducting layer, 

a metal is deposited for contact to the doped layer, and the cantilever is released by the 

removal of the bulk silicon underneath it.  This process is outlined in Figure 4-1. 
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silicon

silicon dioxide

p-type silicon

metal

(a)

(b)

(c)

(d)

(e)

(f)

p+ contacts

 

Figure 4-1.  Generic process for the fabrication of a piezoresistive cantilever.  
(a) starting substrate of silicon-on-insulator (SOI) wafer (b) cantilever and leads 
are etched in top silicon (c) top silicon is boron doped through part of its 
thickness, and p+ contacts are implanted at the base of the cantilever (d) metal 
leads are deposited (e) the wafer is etched from the back side, stopping on the 
buried oxide (f) the oxide is removed, releasing the cantilever. 

Variations on this process flow are used for most piezoresistive cantilevers.  Process 

changes tend to involve the dopant introduction and possible coatings to improve the 

noise characteristics.  A thin (~1000 Å) oxide is often grown after the dopant introduction 

in step (c), nominally to passivate dangling bonds and thereby reduce the noise.  The 

effectiveness of this approach will be discussed in the section on piezoresistor noise in 

Chapter 4. 

The fabrication of thinner piezoresistive cantilevers is difficult for two reasons.  First, 

thin cantilevers are more fragile, and physically harder to release without damaging them.  
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Release techniques such as critical point drying1 can be used, however, and 400 Å non-

piezoresistive cantilevers have been fabricated2.  The second fabrication difficulty is 

related to the electrical properties of the piezoresistor.  Thin piezoresistors are difficult to 

fabricate because the dopant must not be allowed to spread through the cantilever 

thickness.  As was shown in Figure 3-1 half the thickness of a loaded cantilever is in 

compressive stress, and the other half is in tensile stress.  If the dopant is evenly 

distributed through the cantilever, the signal from the compressive bending stress on one 

side will cancel the tensile stress signal from the other. 

Following their invention, the major performance advances of piezoresistive 

cantilevers have come through reduced thickness. At each step, different techniques have 

been employed to circumvent the stress-dopant distribution problem.  The first substantial 

improvement over the original 2 to 4 µm-thick piezoresistive cantilevers by Tortonese et 

al. was by Chui et al., who made 1 µm-thick cantilevers by implanting a boron-doped 

piezoresistor through a protective oxide and activating it with a rapid thermal anneal3.  

Pre-oxidizing the cantilevers and implanting through the oxide eliminates the diffusion 

from a passivating oxide growth anneal that Tortonese had used.  Ried et al. made 0.3 

µm-thick cantilevers by using a lower energy implant, again a rapid thermal anneal, and a 

low temperature oxide for passivation4. 

For sub-micron thick cantilevers, it is difficult to confine the dopant to only the top 

half of the beam, and the 0.34 µm-thick cantilevers are approaching the minimum 

thickness achievable with conventional ion-implantation.  The damage from the implant 

results in transient enhanced diffusion, which causes a 1000-fold enhancement of the 

boron mobility, even for rapid thermal anneals5.  Until the boron atoms find their lattice 

sites in the crystal, even slight anneals cause substantial diffusion of the doped layer.  

Annealing is required to achieve this implant activation, so some transient enhanced 

dopant diffusion is an inevitable consequence. 
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An alternative approach to improving the cantilevers is to include other resistors on 

the chip6.  If a cantilever has two identical piezoresistors, it can be used as two of the 

resistors in the Wheatstone bridge, thereby gaining a factor of two in sensitivity.  The 

increase in cantilever size required to accommodate two resistors requires a larger 

cantilever, however, so the net effect may be mitigated somewhat.  A second resistor can 

alternatively be added elsewhere on the chip, perhaps on a dummy cantilever, in order to 

decrease temperature sensitivity.  For most AFM measurements, the time scale is such 

that temperature fluctuations are not critical, but where low frequency drift is an issue, a 

dummy resistor can be an effective remedy. 

4.2. Epitaxially grown piezoresistors 

The thickness limitations of ion implantation can be overcome by using vapor phase 

epitaxy.  In vapor phase epitaxy, a clean surface of silicon is exposed to silane and borane 

gasses at temperatures ranging from 800°C to 1200°C, resulting in growth of boron 

doped silicon layers at about 10 Å/sec at 800 °C.  A 300 Å-thick boron-doped layer can 

therefore be grown at 800 °C in 30 seconds, during which time there is negligible 

diffusion.  The dopant concentration is set by the concentration of the borane gas, and the 

epitaxy results in a step-like doping profile.  This is in contrast to implanted atoms, which 

follow a Gaussian profile.  Furthermore, the dopant is active in the lattice as grown, so an 

activating anneal is unnecessary and there is no transient enhanced diffusion.  Some 

additional annealing is therefore tolerable.  

A TSUPREME-IV simulation of an epitaxially grown profile is shown in Figure 4-2, 

both as grown and after a 3-hour wet anneal at 700°C which grows 200 Å of thermal 

oxide.  Before the implant, the doping concentration drops almost five orders of 

magnitude in under 10 nm.  After the anneal, there is still an order of magnitude drop in 
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that distance.  From these profiles, cantilevers well under 100 nm thick should be 

possible.  The validity of this simulation is shown in the experimental results of section 

4.3. 
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Figure 4-2.  TSUPREM-4 simulations showing the dopant profile immediately 
following epitaxy, and after a 3-hour anneal at 700 °C. 

One advantage of implantation is the ability for easy patterning with a photoresist 

mask.  The same result can be achieved epitaxially by patterning parts of the surface with 

oxide, and then alternating growth steps with etching in situ using gaseous HCl.  Silicon 

that is deposited on the oxide layer is amorphous and is quickly removed during the 

etching cycle, whereas the single crystal silicon is not. This capability is a standard 

feature of vapor-phase epitaxy reactors. 

4.3. Detailed epitaxy fabrication procedure 

The starting material for these devices was a SIMOX SOI wafer with a 2000 Å top 

layer of <100>, 10-20 Ω-cm p-type silicon on a 4000 Å thick oxide.  The silicon layer 

was thinned to 800 Å by growing a thermal oxide and stripping it with buffered oxide 

etch (BOE).  After cleaning, the wafer was loaded into the epi reactor, and cleaned in the 

chamber for 30 seconds in gaseous HCl. This typically removes another 100 Å of silicon.  
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Approximately 300 Å of epitaxial silicon was then grown at 800°C, doped to its solid 

solubility limit of 4×1019 cm-3.  The cantilevers were then photolithographically patterned 

and plasma etched, and 1015 cm-2 of boron was implanted at 30 keV for ohmic contacts. 

To activate the contact implant and passivate the piezoresistor surface, 200 Å of 

thermal oxide was grown in a 3 hour wet anneal at 700°C.  According to TSUPREM-IV 

simulations, previously shown in Figure 4-2, the dopant diffusion from this step is 

minimal.  The front side processing was completed with the evaporation and patterning of 

aluminum leads and a 1-hour forming gas anneal at 400°C.  The forming gas anneal is 

critical for the 1/f noise characteristics, which are at least an order of magnitude worse 

without it.  The effect of the 3 hour anneal, which was also included to improve 1/f noise, 

is discussed further in Chapter 3. 

The release for these cantilevers was done using a Bosch deep reactive ion etch 

(DRIE) from the back of the wafer.  After the DRIE, they are still embedded in a 

protective photoresist on the front side and the buried SOI oxide on the back. A dip in 6:1 

BOE was used to remove the oxide, and after unsuccessful attempts to cleanly remove 

the photoresist layer with an O2 plasma etch, an acetone dip followed by critical point 

drying was ultimately used*.  Upon release from the photoresist it was discovered that 

due to surface tension, the BOE had not cleared out the oxide at the bottom of the etch 

holes.  A few cantilevers were set aside for reference, and the rest of the wafer was 

dipped in pad etch, which could access the now-exposed oxide from the front of the 

wafer.  This etch removed both the SOI buried oxide and the 200 Å passivating oxide 

around the cantilevers.  This accidental loss of the passivating oxide did not adversely 

affect the noise of the devices. 

                                                 
* Critical point drying was performed at Hewlett-Packard Labs. 
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4.4. Results: 100 nm-thick piezoresistive cantilevers 

A variety of cantilevers between 870 Å and 900 Å thick were fabricated using the 

epitaxy approach.  These devices represent a factor of 4 thickness reduction compared to 

the thinnest implanted piezoresistive cantilevers4, and a factor of 20 reduction compared 

to current commercial piezoresistive cantilevers7.  The thickness values were measured 

using an ultra-violet reflectometer.   

The cantilevers range in length from 10 µm to 350 µm and in width from 2 µm to 44 

µm, four of which are shown in Figure 4-3. 

 

Figure 4-3.  SEM of 87-91 nm-thick cantilevers. (a) 10 µm × 8 µm (b) 50 µm × 
2 µm (c) 40 µm × 20 µm (d) 350 µm × 44 µm.  Cantilever (d) is at a 40% scale 
compared to the others. 

Note that there is little evidence of curling even in cantilever (d) despite the extreme 

length to thickness ratio of the cantilever.  Although the 4 × 1019 cm-3 boron dopant 

concentration introduces some compressive stress, the stress is not large enough to pose a 

concern for cantilever bending. 

The cantilevers range from 0.1 N/m stiffness and 2 MHz resonant frequency to 

0.00003 N/m stiffness and 1kHz resonance.  A general-purpose 50 µm × 2 µm wide 

cantilever has spring constant of 0.001 N/m and a 50 kHz bandwidth. 
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The sensitivity of the cantilevers was measured by using a piezoelectric actuator to 

press them with known deflection against a solid surface.  The results for the longest 

cantilever, with the best force resolution, are shown in Figure 4-4. Comparing this 

sensitivity to that predicted by equation (3.17), gives a measured sensitivity of 70 % of 

the theoretical maximum, or β=0.7.  The value of β  predicted from the simulation can be 

computed by integrating the profile of Figure 4-2, and results in a value of 0.65. This 

suggests that the simulated doping profile is a good approximation, and that the epitaxy 

approach is valid for thin cantilevers. 

 

Figure 4-4.  Response of 0.089 µm × 44 µm × 350 µm cantilever to 1 µm and 
0.1 µm displacements.  The spring constant is 0.00003 N/m, so these are forces 
of 33 pN and 3 pN respectively.  The bandwidth is from 1 Hz to 1200 Hz. 

This method of measuring sensitivity was not found to be repeatable for the longest 

cantilever, with results varying almost an order of magnitude, some better and some 

worse than this one.  The problems here are analogous to those discussed in section 2.1 

regarding cantilever spring constant calibration.  Any slight tilt in the cantilever mounting 

angle introduces substantial buckling forces.  The piezoelectric actuator that provided the 
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z-motion in the scans was also visibly introducing some unwanted motion in the x and y 

directions that applies a torque on the beam. 

The calibration of the shorter cantilevers using direct bending with a piezoelectric 

tube was more repeatable, but suffered from a different problem.  Misalignment of the 

backside etch during fabrication resulted the top silicon layer overhanging the backside 

cavity 20-50 µm at the base of the cantilever.  The applied displacements are then 

absorbed by the deflection of the thin silicon layer at the base of the cantilever, reducing 

the measured sensitivities by up to 50%.  This problem could be avoided with a thicker 

top substrate such as the piggy-back cantilever shown in Figure 3-4. 

In order to more accurately calibrate the sensitivity of the largest cantilever, a second 

sensitivity measurement was made using the thermomechanical noise of the oscillator.  In 

a vacuum, the resonance quality of this oscillator is enhanced from about 5 up to 85, and 

the thermomechanical motion at the resonant frequency is then visible above the other 

noise sources of the cantilever.  This motion was measured with the piezoresistor and also 

with a calibrated laser vibrometer to compute the displacement sensitivity.  The 

piezoresistor response to thermomechanical noise is shown in Figure 4-5, along with the 

theoretical thermomechanical noise and vibrometer data from another cantilever of the 

same geometry but slightly different resonant frequency.  The sensitivity value of the 

piezoresistor in this figure is consistent with the AFM sensitivity measurement of Figure 

4-4. 
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Figure 4-5.  Piezoresistor response to thermomechanical noise in a 30 mTorr 
vacuum.  The theoretical thermomechanical noise is also indicated for this 
oscillator with a Q of 60.  The dotted points are vibrometer data from another 
cantilever of the same geometry but slightly different resonance.  The 
vibrometer noise floor is a factor of 5 below that of the piezoresistor.  The 
piezoresistor sensitivity shown here is consistent with the sensitivity of Figure 
4-4. 

For piezoresistive cantilevers, the most frequently quoted bandwidth is from 10 Hz to 

1 kHz.  In that bandwidth, the resolution of this cantilever is 500 fN.  At its best 

frequency (near 1 kHz), it achieves a resolution level of 8 fN/√Hz.  A typical commercial 

cantilever has force resolution of only 0.5 nN in the 10 Hz to 1 kHz bandwidth, so for 

pure force resolution, this cantilever represents a three order of magnitude improvement.  

These performance specifications are similar to those achievable using optical 

tweezers8,9. 
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4.5. Outstanding fabrication issues 

The back side etch to expose the cantilever and the final release step are the two 

processing steps that are most troublesome. 

Back-side etching 

Tortonese and Chui both used wet etches to make windows under the cantilevers and 

define the chip.  This has the two disadvantages.  The first is that the 55 degree angle of 

the exposed <111> planes uses a lot of real estate on the wafer.  It also makes definition 

of the final chip problematic due to the rapid etching of convex corners.  Without the 

ability to etch convex corners, the chip will be attached to the wafer at all four corners, 

and quite resistant to breaking from the wafer. 

The second disadvantage of wet etching is that the front side of the wafer must be 

protected.  Protection from tetra-methyl-ammonium hydroxide (TMAH) or potassium 

hydroxide (KOH) can be achieved using polyimide plus wax and a glass plate, using a 

layer of nitride, or single-side etcher.  The polyimide-wax method was found to require 

close monitoring for the 8 hours of the etch, since leaks in the wax occur quite frequently.  

Ethylene diamine pyrochatechol (EDP), an alternative to TMAH that can be masked 

using only polyimide, is now unavailable in most clean rooms due to safety concerns. 

Another alternative to protecting the front of the wafer is to deposit silicon nitride. On 

a metallized wafer, this requires a PECVD nitride chamber, and the resulting film tends to 

be full of pinholes through which the TMAH can penetrate.  As another alternative, oxide 

layers proved to be an unsatisfactory TMAH mask, as oxide protected features eroded far 

sooner than predicted from published etch rates10. 

Because of these difficulties, most of these cantilevers were etched using the DRIE 

process.  Such an etch stops readily on the buried oxide layer of the SOI wafer, requires 

little in the way of front side protection, and is not limited in the shape of the etch.  
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Because larger areas etch faster than slower ones, easy-to-release chips can be fabricated 

by taking advantage of this in the mask design shown in Figure 4-6.  The central chip will 

be supported by the two tabs at the bottom.  If the space between the chip and tab is 

around 10 microns, with the rest of the spaces at least 50 microns wide, the thin spaces 

will only be etched about halfway through the wafer, enough to allow the chip to be 

broken off cleanly and easily. 

 

Figure 4-6.  Backside release mask for DRIE release. The space between the 
central chip and the bottom tabs etches more slowly than the rest, so the 
completed chip is supported by two tabs which are pre-scored to break off 
cleanly. 

For a more compact packing of devices, a combination of DRIE and dicing can be 

used.  If the front of the wafer is protected with a polyimide layer, then it can be diced 

after the DRIE etch.  In this case the backside etch holes can be just large enough to 

expose the cantilevers, rather than a moat surrounding the chip, as shown in Figure 4-6. 

Buried oxide removal 

Both a wet etch and a deep reactive ion etch stop on the buried oxide of the SOI.  This 

oxide must then be removed.  A plasma etch can be used, but if DRIE was used for the 

silicon removal, the sidewalls may have negative slope and will then shadow-mask the 
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oxide.  A wet etch such as buffered hydrofluoric acid is more convenient for the oxide 

removal and more selective to silicon, but the surface tension tends to prevent the acid 

from entering the release holes.  This is particularly problematic for DRIE etched wafers, 

which are coated with a polymer residue.  Adding a surfactant (X-14) to the oxide etch 

does not improve matters noticeably.  Simply avoiding small holes is another option, or, 

since the passivating oxide did not prove to be important, etching the oxide with pad etch 

from the front surface of the wafer is also a possibility. 

Cantilever release 

Another difficulty which plagues both the DRIE and the wet etch approach is in the 

final release of the cantilevers.  Most of the cantilevers discussed in this research are too 

delicate to be removed directly from a liquid.  As the liquid dries the cantilevers are bent 

backwards by the surface tension of the receding liquid-air interface until they are broken 

or pinned to the chip.  Critical point drying is an effective technique to avert this problem, 

but requires specialized apparatus not found in most clean rooms. 

The other option is to embed the cantilevers in membranes that protect them during 

drying and can then be selectively removed in a dry plasma.  Organics such as polyimide 

or photoresist can serve this purpose, but the membrane removal proved surprisingly 

challenging.  Frequently, even after prolonged O2 etches tendrils of blackened polyimide 

or photoresist remain on the cantilevers and around the release holes, as shown in Figure 

4-7.  Identical wafers without release holes come perfectly clean, suggesting that it is 

some feature of the membrane that impedes clean removal.  I postulate that because the 

membranes do not have silicon nearby to conduct away the heat they char into a semi-

permanent form.  Piranha etch (H2SO4 + H2O2) will also not remove these remains.  This 

problem did not occur on all the wafers, but when did occur, it was regrettably necessary 

to discard the cantilevers. 
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Figure 4-7.  Polyimide residue on FABS cantilevers after O2 plasma release. 

4.6. Summary 

To address the problem of dopant spread, epitaxial growth was used to create a doped 

piezoresistive layer.  The technique was demonstrated by the construction of high-

sensitivity cantilevers under 1000 Å thick.  The basic fabrication procedure, along with 

the major processing difficulties of the backside etch and release, was also described.  
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Chapter 5. Noise in piezoresistors 

5.1. General noise observations 

Piezoresistive sensors have two main noise sources, both easily distinguishable on a 

typical noise spectrum vs. frequency, as shown in Figure 5-1.  At low frequencies, all 

resistors suffer from conductance fluctuations, usually called 1/f noise because the noise 

power density [V2/Hz] decreases as one over the frequency.  In addition to this is Johnson 

noise, which is independent of frequency, and shows up on a frequency spectrum plot as 

horizontal line.  Johnson noise is fundamental, due to thermal energy in a resistor, and is 

well-understood1. 
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Figure 5-1. Typical measured cantilever noise spectrum from thin (1000 Å) 
cantilevers showing Johnson and 1/f noise.  Typical cantilevers transition from 
1/f  to Johnson noise in the low hundreds of Hertz.  
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The cause of 1/f noise, on the other hand, is still an active area of research, and 

despite the fact that it is the dominant noise source for most piezoresistors, it has not been 

properly included in a piezoresistor analysis.  It will be shown that a 30 year-old 

empirical model of 1/f noise in a resistor2 is applicable for piezoresistors.  This model has 

clear dependencies on the sensor geometry and processing, and provides the missing link 

for a complete optimization. 

5.2. Johnson noise 

The Johnson noise of a piezoresistor is a fundamental limit, set by the thermal energy 

of the carriers in a resistor, and dependent only on the resistance, R, and the temperature, 

T.  It is white noise, independent of frequency.  The voltage noise power density SJ (units 

[V2/Hz]) in a measurement bandwidth from fmin to fmax is 

 ( )minmax4 ffTRkS BJ −= , (5.1)

where the subscript J indicates that it is the Johnson noise.  

 

Figure 5-2.  Schematic of piezoresistive cantilever with variables. 

For a step doping profile of thickness td, the total Johnson noise depends only on the 

geometry and the doping.  For the geometry given in Figure 5-2 the resistance is 
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approximated by R=(4llegρ)/(wtd). The resistivity of the doped region is defined as 

ρ=(µpqp)-1, where µ is a known function of the dopant density.  The factor of 4 enters 

because the cantilever has two legs, each of width w/2 and length lleg.  The total Johnson 

noise power for a given geometry and doping is therefore 

 
( )minmax

2 16
ff

qpwt

Tlk
V

d

legB
J −=

µ
. (5.2)

Although the overall resistance sets the Johnson noise level, minimizing R is not 

usually a priority for the following reason: the sensitivity is proportional to the bias 

voltage, which is in turn limited by the power dissipation of the device (VB
2/R=constant), 

so VB= R⋅constant.  Since both the sensitivity and noise vary as R , the Johnson noise 

due to high resistance can be compensated for by an increased bias voltage.  The 

minimum value of R is in fact more of a concern, and should be high enough to exceed 

the voltage noise of the first stage of amplification.  For the AD624 instrumentation 

amplifier, the voltage noise is 4 nV/√Hz, which is equivalent to the Johnson noise of a 

1 kΩ resistor.  The current noise of the AD624 is 200 fA/√Hz above 10 Hz, so in that 

frequency range the Johnson noise of the resistor will exceed the current noise up to a 

resistance of 400 kΩ. 

5.3. 1/f noise 

Hooge noise theory 

In 1969, F. N. Hooge put forth the empirical observation that the 1/f noise spectral 

density (units [V2/Hz]) of a homogeneous resistor is dependent on the total number of 

carriers in the resistor, according to the equation:  
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where VB is the bias voltage across a resistor with a total number of carriers N, and f is 

again frequency2.  α is a dimensionless parameter which, for an implanted resistor, has 

since been found to vary depending on the anneal3. 

If equation (5.3) is integrated from fmin to fmax, then the voltage noise power is  
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Note that for any decade of frequency, the integrated 1/f noise is constant.  The total 

noise between 1 Hz and 10 Hz is the same as that between 1 kHz and 10 kHz.  Although 

the bandwidth is much greater in the latter case, the noise level is correspondingly less. 

For a constant doping concentration, the number of carriers is proportional to the 

volume, so the 1/f noise power density varies inversely with the cantilever volume.  This 

is an unfortunate result for the prospects of further cantilever miniaturization.  The Hooge 

noise is not dependent on the resistance since a long thin resistor with high resistance can 

have the same number of carriers as a short, wide, low resistance one. 

Verification of the Hooge formula 

We initially happened onto Hooge noise as the source of our 1/f  problems after a set 

of thin epitaxial cantilevers showed unusually high 1/f noise characteristics.  Four of 

these 0.1 µm-thick cantilevers were pictured in Figure 4-3.   Plots of noise vs. frequency 

for these cantilevers are shown in Figure 5-3.  This data set suggests that there is 

something systematic in the 1/f noise of these piezoresistors, since the noise levels are 

ordered according to the size of the cantilevers.  These noise levels are also higher than 

those reported for other thicker cantilevers from the literature, whose 1/f noise corner is 
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typically in the low hundreds of hertz4,5.  Some 1 µm-thick cantilevers from the same 

fabrication run as the cantilevers of Figure 5-3 had much lower 1/f noise, so the epitaxial 

process itself could not account for the excess noise. 
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Figure 5-3.  Noise spectra of the 100 nm-thick cantilevers shown in Figure 4-3.  
(a) 10 µm × 8 µm (b) 50 µm × 2 µm (c) 40 µm × 20 µm (d) 350 µm × 44 µm.  
The piezoresistive region is not the same percentage of the total cantilever 
volume in all cases. 

Our initial explanation was that because the passivating oxide on the cantilevers had 

been removed (see section 4.3), surface noise effects were dominating.  A set of 

cantilevers that had not been released or stripped of their oxide showed the same noise 

spectra, however, discounting that hypothesis.  The ability to remove or omit the 

passivating oxide, in fact, has positive implications for thin piezoresistive cantilevers, 

since for such thin cantilevers even a thin oxide passivation contributes a substantial 

percentage thickness and results in undesirable bending from the compressive stress of 

the oxide. 
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To test the Hooge noise relation, the total number of carriers in each cantilever was 

calculated using a finite element analysis.  The 1/f noise for a variety of cantilevers is 

plotted as a function of the effective number of carriers, N, in Figure 5-4.  The plot shows 

cantilevers of different lengths, widths and thicknesses, ranging from 970 Å to 2.2 µm 

thick.  The square points are from this work, for 300 Å-thick 4⋅1019 cm-3 boron doped 

epitaxially grown layers with lengths ranging from 10 µm to 350 µm and widths ranging 

from 4 µm to 40 µm.  Figure 5-3 also includes points from thicker cantilevers previously 

published by other authors. 
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Figure 5-4. Measured 1/f noise power density at 10 Hz vs. number of carriers 
for piezoresistive cantilevers. A line of slope -1 indicates the Hooge model.  The 
point from Tortonese et al. has a greater anneal than the others (see section 6.3). 

This plot further contradicts the notion that surface quality is paramount in the 1/f 

noise level of a resistor, since the data shows increasing noise as the surface area 

decreases.  If the hypothesis were put forth that the surface to volume ratio were the 

important parameter, then cantilevers with constant thickness and doping should all have 

the same noise, because their surface to volume ratio, (wl)/(wlt), is constant.  The square 
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points plotted in Figure 5-4 are from cantilevers of the same thickness and doping, 

indicating this is also not the case. 

Computing the number of effective carriers 

For a rectangular resistor with constant doping concentration, N=pwlt.  For non-

rectangular resistors, where the current density is not constant, the equivalent number of 

carriers is more difficult to compute and the simple formula of equation (5.3) cannot be 

directly applied.   

Intuitively, carriers near the tip of the cantilever should not be included in the 

computation of N, since they are not involved in the conduction.  This is indeed the case, 

and a more complicated formula must be used, which weights carriers by their 

contribution to the current density.  This can be written as6: 

 
( )∫∫∫ ⋅= dxdydz

p
JJ

fI
SH

2
2

2

ρα
 (5.5)

where I is the total current and J is the current density.  The integral is taken over the 

full volume of the cantilever. 

To use this formula on a non-trivial geometry requires knowledge of the current 

density, which usually entails a finite element solution, such as that shown in Figure 5-5.  

Note that highest current density is at the corner where the current changes direction.  

Since the current density contributes noise power to the fourth power it is therefore 

advisable to minimize sharp corners in the current path wherever possible. 
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Figure 5-5.  Finite element solution of current density in a cantilever.  The 
current travels out the top leg, and returns on the bottom leg, with the highest 
current density near the corner where it changes direction. 

For back-of-the-envelope calculations, one can define a square of resistance as the leg 

width squared, and compute the number of carriers in one square.  Knowing the total 

number of squares from a measured value of resistance then gives a close approximation 

of N. 

Sharp corners pose a difficulty for counting squares without real devices to measure.  

Table 5-1 shows four simulated geometries, and the number of squares of resistance 

associated with each.  This should be a sufficient tool to adequately approximate most 

structures for design purposes.  Some of the shapes in the table can be constructed from 

sub-shapes, which gives an idea of the errors involved in building from simple cases.  

Although the equivalent number of squares resistance can be obtained from Schwarz-

Christoffel conformal mapping7, these values were obtained with a finite element model. 
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(a) 1.42 Squares (b) 2.55 Squares 

  

(c) 2.88 Squares (d) 4.05 Squares 

Table 5-1.  Building blocks for computing the number of squares resistance.  
The bold lines at the ends of the structures indicate lines of constant potential 
where the bias voltages are applied. 

In many cases, however, approximating the number of carriers as the density times 

the doped volume of the legs (N=llegtdw) is adequate.  Then, as for Johnson noise, the 

Hooge noise can be predicted based on only the doping and geometry as 
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5.4. Thermomechanical noise 

Another possible noise source for consideration in piezoresistive cantilevers is the 

thermomechanical noise8.  This is the mechanical analog of Johnson noise, and consists 

of physical oscillations due to thermal energy in the beam.  Thermomechanical noise has 

yet to be a limiting factor for the low frequency noise of any piezoresistive cantilever, but 

has been observed for high-Q cantilevers on resonance9 and could particularly be a factor 

in resonant sensors where the noise spectrum near the resonance is of consequence.  The 

cantilevers reported in this work are the closest to DC thermomechanical noise of any 
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thus far reported.  The Johnson noise of the softest cantilever comes within a factor of 5 

of the low frequency thermomechanical noise. 

Thermomechanical noise is effectively a white noise drive [N2/Hz] of force power 

density 
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4
ω

= . (5.7)

This drive signal passes through the transfer function of the cantilever.  If the damping is 

independent of frequency, the fundamental mode can be well represented as a second 

order oscillator as 
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so the resulting displacement noise spectral density [m2/Hz] is  
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At low frequencies the displacement noise is independent of frequency, which, rewritten 

to include the spring constant, k, is 

 
Qk
Tk4

S
0

B
th ω

= . (5.10) 

At resonance the amplitude is increased by a factor Q, with a width of f0/Q at the –

3dB points.  Above the resonance the noise rolls off at –40 dB/decade, although there will 

be higher order modes present which are not included in this model.  The amplitude [m] 

of the noise oscillations as a function of frequency is shown in Figure 5-6. 
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Figure 5-6.  Displacement as a function of frequency for the thermomechanical 
noise of an oscillator, illustrating two methods to measure Q from such a 
diagram. 

Note that in Figure 5-6 the definition of f0/Q as the width at the –3 dB point is not the 

full width half maximum of the curve.  The definition of f0/Q as the width at half 

maximum is true only on a power plot [m2], and not on a plot of amplitude [m].  In either 

case, Q is defined with reference to the –3 dB point, but on a power plot there are only 

10 dB per decade, so the half maximum is –3 dB.  In an amplitude plot there are 20 dB 

per decade, so the –3 dB point is where the amplitude has dropped by 1/√2.  This 

definition of Q can be verified by showing that the amplitude of H(ω) at f=f0+f0/2Q (from 

equation (5.8)) is very close to half of H(ω) at f=f0. 

5.5. Summary 

The three major noise sources for piezoresistive cantilevers were identified:  Johnson 

noise, 1/f noise and thermomechanical noise, and equations for each in terms of beam 



   

 

74 Chapter 5 

dimensions and electrical characteristics are provided.  1/f noise was shown 

experimentally to follow the Hooge relation for piezoresistors.  These noise sources will 

provide a basis for a complete piezoresistor optimization in the following chapter. 
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Chapter 6. Optimization of piezoresistor design 
and processing 

With the addition of the Hooge noise relation of equation (5.3) to the sensitivity and 

Johnson noise equations, the impact of geometry and doping on the major noise sources 

and the sensitivity is now known.  The analysis of Chapter 2 can now be extended to a 

full optimization of cantilever resolution. 

The pattern of the optimization trade-off is repeated several times.  Improvements 

designed to help the noise by increasing the number of carriers or lowering the Hooge 

constant, α, hurt the sensitivity, either by lowering the β  of equation (3.24) or reducing 

the piezoresistive coefficient π l. 

The electrical processing of the cantilever has no effect on the thermomechanical 

noise, which is specified entirely by the spring constant, resonance frequency and 

resonance quality.  The particular choices of length width and thickness once k and ω0 are 

specified have no bearing on the thermomechanical noise, except perhaps in the Q of the 

oscillator.  For these reasons, and considering that no piezoresistive cantilever has ever 

been limited by low-frequency thermomechanical noise, the optimization which follows 

concerns only Johnson and 1/f noise. 

6.1. Geometrical design optimization 

Thickness 

As established in Chapter 2, for high sensitivity and bandwidth cantilevers should be 

made as thin as possible.  Thinner cantilevers have increased bending stress from applied 

forces, and the lower mass permits higher bandwidth for a given spring constant.  As was 
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shown in the previous chapter, however, 1/f noise is worse for smaller cantilevers.  It will 

be demonstrated in this chapter that the low frequency resolution is worse for a thin 

cantilever, despite the increased sensitivity.  The cantilever should therefore be made as 

thin as necessary to satisfy the spring constant and bandwidth requirements, but no 

thinner, if it is to be used as a low frequency transducer.  For cantilevers that will measure 

resonant shifts, or are otherwise primarily concerned with higher frequency signals, the 

device should be made as thin as possible. 

Width  

From equation (3.17), it is evident that reducing width can improve force sensitivity 

as w-1. In this case it reduces the spring constant, but not the resonant frequency.  

According to equations (5.2) and (5.6), the voltage noise from both Johnson and Hooge 

sources varies as w-1/ 2 so the resolution varies as w1/2.  From this perspective, cantilevers 

for force resolution should be as narrow as the lithography limitations allow. 

However, if the width is to be reduced without changing the spring constant (i.e. 

reduce the length at the same time), the force sensitivity only improves as w-1/3, and both 

the 1/f and Johnson noise gets worse according w-2/3.  In this case, the force resolution for 

a fixed spring constant actually improves for wider cantilevers, but varying only as w-1/6.  

With the spring constant fixed, the displacement resolution in this case also varies as 

w-1/6, again slightly favoring wider cantilevers.  This variation is so slight, however, that 

any convenient width value will do, and much concern need not be given to the matter.  

Leg length 

Once the thickness, spring constant and width are chosen, the length of the cantilever 

is fully determined.  The ratio of the leg length, lleg, to the total length l still remains to be 

chosen, however.  If the legs extend the full length of the cantilever,  the number of 

carriers is maximized, to the benefit of the Hooge noise, but there is a loss in sensitivity 
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due to the extra resistance near the tip of the beam where the stresses are low. Conversely, 

if the legs had nearly zero length, the piezoresistive region would always see the 

maximum possible stress, but the resistor would have increased Hooge noise due to a 

lack of carriers.  By writing a full expression for the displacement resolution, the 

optimum leg length can be computed. 

If the piezoresistor makes up one corner of a Wheatstone bridge, the output signal is  
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and an expression for the displacement resolution which includes both noise sources 

and the force sensitivity can be written:  
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In this case the first term in the numerator is the contribution of Hooge noise, and the 

second is the contribution of Johnson noise.  The denominator is an expression of the 

sensitivity. 

If lleg in equation (6.2) is replaced by a⋅l, where a is the fraction of the total length that 

the legs extend, then the resolution can be written as a function of a.  Differentiating xmin  

with respect to a then gives an optimal ratio of the leg extension.   

The calculated displacement resolution for a typical cantilever1 is shown in Figure 

6-1, along with the resolution limited by Johnson and Hooge noise independently.  The 

1/f limited resolution always has a minimum at a=2/3, and the Johnson limited resolution 

increases monotonically, so there is no reason to extend the legs beyond two thirds of the 

cantilever length.  For leg length less than one third the total length, the 1/f noise 
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increases dramatically, unless the cantilever is dominated by Johnson noise.  For the rest 

of this work a=0.5 will be used as an optimal value for the general case. 
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Figure 6-1.  Plot of noise vs. leg length ratio a for standard cantilever1 in a 
bandwidth from 10 Hz to 1 kHz. The dotted curve indicates the 1/f noise, and the 
dashed curve is the Johnson noise.  Thermomechanical noise with a Q of 50 
would add a horizontal line to this graph at 4 × 10-13 m, and is therefore a 
negligible source of noise. 

At this point, the cantilever geometry has been optimized, but there remain several 

important processing decisions that will affect the performance.  The appropriate doping 

level must be chosen, as well as the thickness of the doped layer.  Following that, surface 

treatments and an appropriate anneal must be chosen to minimize the noise without 

unduly reducing sensitivity. 
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6.2. Dopant concentration 

There are two major decisions to be made regarding the dopant: 1) how deep should it 

extend into the cantilever, and 2) what is the appropriate concentration.  Both decisions 

involve a trade-off between sensitivity and noise.  The depth and concentration are 

independent for the optimization, so they can be treated separately.  

Dopant depth 

The optimum depth of the doped layer involves a trade-off of reducing the noise at 

the expense of reduced sensitivity.  If the doped layer is very shallow, the number of 

carriers is small and the 1/f noise is high, but if the doped layer is very deep, β  (see 

section 3.5) tends to zero, and sensitivity is lost. 

Epitaxially grown layers can achieve near step profiles, and implanted layers can be 

approximated with an equivalent step profile.  The assumption of a step profile simplifies 

the integral formula of equation (3.24) to β  = 1-td/t, where td is the thickness of the 

dopant. After substituting this simplified equation for β   into the total resolution equation 

(6.2), the derivative can be computed with respect to td to solve for the minimum 

resolution.  The resulting minimum occurs at td =t/3, and is independent of the doping 

level and the geometry, including thickness.  For doping depth between 15% and 60% of 

the thickness the resolution is within 20% of the optimum, beyond which point it rolls off 

sharply, as shown in Figure 6-2.  For all piezoresistive cantilevers, then, the target 

thickness for the doped layer should be approximately one third of the total thickness, but 

there is some room for error. 
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Figure 6-2.  Force resolution as a function of doping depth.  The optimum 
resolution is obtained for a doping thickness of t/3.  Dopant depths from 0.15t to 
0.6t give resolution within 20% of the minimum. 

Concentration 

Early studies of the piezoresistive effect showed that as the doping concentration 

increased, the piezoresistive coefficient, π l, decreased2.  This has a direct impact on the 

sensitivity from equations (3.17) and (3.18), and so although a higher concentration has 

more carriers for reduced noise, again it is not without cost. 

A majority of recent calculations for the relation between π l and the doping 

concentration have used a theoretical model proposed by Kanda3 for the relation between 

π l and the doping concentration.  This model is reasonably accurate at low 

concentrations, but it substantially underestimates π l at higher doping concentrations.  At 

low concentrations (~5×1014 cm-3) Smith found the p-type longitudinal piezoresistive 

coefficient in the [110] direction for silicon to be relatively constant at 72×10-11 m2/N.4  

Since the piezoresistive coefficient decreases at higher concentrations (above 1017 cm-3), 
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a piezoresistive factor P(p), dependant on the doping concentration, was defined by 

Kanda to express the coefficient as a fraction of the maximum, low concentration, value.  

Room temperature data from Mason et al.2, from Tufte and Stelzer5, and one point from 

Kerr and Milnes6, is shown in Figure 6-3 along with the theoretical curve from Kanda. 
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Figure 6-3.  The longitudinal piezoresistive coefficient as a function of boron 
concentration.  A widely used theoretical model by Kanda is shown as the solid 
line.  This model substantially underestimates the piezoresistive coefficient at 
high concentrations. 

For concentrations in the range of interest (above 1017 cm-3), this data is well 

approximated by a straight line on the semi-log plot, according to 
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with a = 0.2014 and b=1.53 ⋅ 10-23 cm-3. 
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The trade-off is by now a familiar one.  At high dopant concentrations there are many 

carriers, and therefore improved Hooge noise.  At low concentrations the sensitivity is 

highest, which gives the best resolution for a device limited by Johnson noise.  There is a 

further limitation, however, because high dopant concentrations result in lower resistance.  

The sensitivity varies proportionally to the bias voltage (equation (6.1)), while the power 

varies as VB
2/R so for a fixed power consumption, a heavily doped cantilever will a lower 

bias voltage and therefore reduced sensitivity.  This is a second sensitivity loss associated 

with higher doping. 

For the 1000 Å thick cantilevers in vacuum, we have found that power consumption 

in excess of 2-3 mW can result in destruction of the beams.  Thicker cantilevers should be 

able to dissipate more power, but conservatively assuming a maximum power of 2.5 mW, 

the optimum doping level can be computed. Figure 8 shows the Hooge and Johnson 

limited force resolution as a function of dopant concentration for the standard cantilever 

in a bandwidth from 10 Hz to 1 kHz with a power consumption limited to 2.5 mW.  The 

best force resolution in this case occurs for a doping of 1020 cm-3, substantially higher 

than the 1017-1018 cm-3 typically used. 
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Figure 6-4.  Minimum detectable force vs. doping concentration for standard 
cantilever1 assuming a maximum power dissipation of 2.5 mW. 

Again, the bandwidth of interest is important.  A low-frequency cantilever that is 

dominated by 1/f  noise will favor heavy doping, while a cantilever used for 

measurements in a Johnson noise-limited frequency regime will favor low doping. The 

plot in Figure 9 shows the optimum doping level as a function of the piezoresistor 

volume and intended bandwidth for α=10-6 and P=2.5 mW.  To find the optimum doping 

compute the abscissa, (fmax-fmin/log(fmax/fmin)), for the intended bandwidth and read the 

doping level from the curve corresponding to the cantilever volume (llegtdw).  This chart 

should also be valid for piezoresistors of other geometries.  The dependence on volume 

arises because a large cantilever will naturally have more carriers, and can therefore use a 

lower doping level to increase sensitivity. 

High doping levels also have the added advantage of reduced sensitivity to 

temperature fluctuations.  Tufte and Stelzer show convincing graphical evidence that as 



   

 

86 Chapter 6 

the doping concentration rises, particularly above 1020 cm-3, the piezoresistive coefficient 

becomes almost independent of temperature variations between -80°C and 100°C. 

A final consideration for the doping and depth combination is the total resistance, and 

whether other noise sources may eventually dominate.  A good differential amplifier has 

noise approximately equivalent to the Johnson noise of a 1 kΩ resistor, so1 kΩ is a 

reasonable value for the minimum acceptable resistance. 
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Figure 6-5.  Optimal doping depending on cantilever size and operation 
bandwidth.  A value of 10-6 is assumed for α and the power dissipated is 2.5 
mW.  Compute the value of (fmax-fmin)/log(fmax/fmin) and read the optimal doping 
off the y-axis for the given volume of the doped conducting region of the 
cantilever (llegwt).  For other power dissipation values, the doping concentration 
for a 10-fold increase in power consumption is read from the curve of a 10-fold 
larger cantilever. 
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6.3. Surface treatment and anneal 

The last important processing decision is the annealing of the dopant, and the 

potential addition of passivating surface layers.  All of the piezoresistive cantilevers 

discussed in the work have a passivating oxide layer on the surface of the device, 

presumably to limit the 1/f noise due to charge trapping or surface charges (viz. the 

McWhorter model of 1/f noise7).  

We have found in our batch of 1000 Å thick piezoresistive cantilevers that the 

removal of a 200 Å surface oxide had a negligible effect on the 1/f noise.  Gerlach et al. 

found that that “internal disturbances” were reduced with thicker oxides, particularly 

those grown at higher temperatures, but that secondary coatings such as nitride layers did 

not improve the noise8.  While surface noise sources may still be present, and perhaps 

even dominant in large cantilevers with low Hooge noise, our data supports the claim that 

there is a bulk 1/f noise source that eventually limits the cantilevers. 

In their study of the 1/f noise in implanted resistors, Vandamme et al. found that 

annealing could reduce the α parameter of equation (5.3) by up to three orders of 

magnitude9.  They postulate that the anneal improves the quality of the crystal lattice, 

thereby reducing fluctuations in carrier mobility.  It is not unreasonable to assume that it 

is the total anneal, measured in terms of the diffusion length Dτ , rather than just the 

temperature, which determines the lattice quality (the τ in Dτ is time, to distinguish it 

from the thickness, t).  The diffusion coefficient is defined as D=Dioexp(-Eia/kBT), where 

for boron Dio=0.037 cm2/sec and Eia=3.46 eV10.  A plot of data available in the literature 

is shown in Figure 6-6. 



   

 

88 Chapter 6 

10-11 10-10 10-9 10-8 10-7 10-6

(Dt)1/2 (cm)

α

10-6

10-5

10-4

10-3

Harley

Tortonese

Chui

 

Figure 6-6.  Hooge noise parameter α as a function of anneal diffusion length 
Dτ .  The round points are data from Vandamme et al., taken on implanted  

samples annealed for 4 hours at temperatures ranging from 450°C to 900°C 23;  
the cantilever from Tortonese et al. was annealed 10 minutes each at 900°C and 
1000°C7; the cantilever from Chui et al. was annealed 10 seconds at 1000° C 
and 40 minutes at 800°C14;  the cantilever from this work was epitaxially grown 
silicon annealed 3 hours at 700°C11.  The oxide grown to passivate the epitaxial 
cantilevers was later removed with pad etch.  The other cantilevers remain 
passivated. 

This data is not conclusive, but it does suggest that measured 1/f levels can be related 

to the anneal.  Since a thermal oxide growth is also an anneal, the importance of surface 

oxides may actually lie in the improvement of crystal lattice for Hooge noise rather than 

surface passivation.  The data point from Tortonese et al. in Figure 5-4 which was an 

order of magnitude below the fit line of the rest of the data can now be accounted for by 

Figure 10, where the α parameter for that work is an order of magnitude better than that 

of Chui et al. and Harley et al. 

The fit line of Figure 10 is given by α = 1.5⋅10-9 cm/(Dτ)1/4.  An α value of 10-6 is 

the lowest we are aware of, and the indicated trend line is not likely to continue 
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indefinitely.  Anneals with Dτ  above 10-6 cm are therefore perhaps unnecessary.  The 

point from this work is for epitaxially grown silicon, and isn’t expected to have the same 

lattice damage as an implanted sample.  These caveats aside, if the indicated line is 

correct, the result has some interesting implications for optimization. 

Much like the argument for the depth of the doped layer, the trade-off here is again 

between lower 1/f noise and worsening of β .  Longer anneals cause the dopant to diffuse 

through the beam, resulting in a distribution further from the maximum stress at the 

surface. 

Following an implant, the dopant concentration is well approximated by a Gaussian 

distribution.  This distribution spreads as a Gaussian during an anneal, according to 
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where the total dopant density is QT [cm-2], Dτ is the diffusion length and z is the 

depth into the surface.  It is assumed that the initial implant was done through a surface 

layer such that z=0 occurs at the top of the silicon. 

This formula for the concentration can be substituted into equation (3.24) for β .  It is 

assumed that the implant energy has been selected such that the doping concentration at 

z=t/3 is a factor of 10 less than the concentration at the surface.  This gives β=0.7, which 

has previously been determined to be optimal.  The equation for β  can then be plotted as 

a function of Dτ.  These results are shown in Figure 6-7 for an initial peak concentration 

of 1.5 ⋅ 1020 cm-3 for cantilevers of various thicknesses. 
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Figure 6-7.  Plot of sensitivity factor β vs. anneal for cantilevers of various 
thickness.  Above the corner anneal for each line, the net resolution worsens, 
providing an optimum anneal level for a given cantilever thickness. 

The most important feature of Figure 6-7 is that up to some reasonably well defined 

point the anneal causes negligible dopant diffusion, after which it rolls off. Since the 

Hooge noise is decreasing with additional annealing, the force resolution improves as 

long as β  is unaffected.  Beyond the corner where β  drops off, there is a net loss of force 

resolution, even for a fully Hooge noise-limited cantilever. The optimal anneal strategy is 

therefore to anneal just to the corner of the appropriate curve in Figure 6-7.  For a 0.1 µm 

cantilever, Dτ ~10-6 cm, so any piezoresistive cantilever thicker than 0.1 µm should 

receive at least that anneal, which is 22 minutes at 1000°C.  In general, for anneals which 

are within the range plotted in Figure 6-6, the optimal anneal as a function of thickness is 

calculated to be Dτ=0.025t2, if t is the thickness in meters, and Dτ is the anneal meters 

squared.  Note that this analysis does not include transient enhanced diffusion which can 

substantially increase the dopant diffusion for implanted samples11.  
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6.4. Operation 

Now that an optimized device has been designed, only the question of optimal bias 

voltage remains.  The sensitivity improves linearly with the bias voltage, according to 

equation (6.4), so at first glance a high bias voltage appears desirable.  For 1/f noise 

limited sensing, the noise power varies as VB
2, so the noise voltage varies as VB and there 

should be no preference for a particular bias voltage.  The Johnson noise is independent 

of bias voltage, however, so in this case the higher bias is preferable.  With one case 

preferring high bias, and the other ambivalent, the cantilever should be biased as high as 

its power dissipation abilities can tolerate.  This is typically on the order of a few 

milliwatts, corresponding to a bias voltage of 5-10 V for most cantilevers.  In addition to 

the potential physical destruction of the cantilever12, a high operating temperature can 

hurt the resolution performance13. 

6.5. Predicted resolution 

Incorporating all the optimization decisions made so far, we can now estimate the 

achievable force resolution for piezoresistive cantilevers.  Assume the leg lengths extend 

half the total length, that the width is 10 µm, and that a doped region of 1019 cm-3 extends 

one third of the cantilever thickness, giving a β  of 0.7.  The optimal anneal is then 

selected as a function of thickness as described previously.  For a given thickness spring 

constant and assuming a width of 10 µm, the length can be determined from equation 

(3.1).  
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Figure 6-8.  Displacement resolution, as limited by 1/f noise and by Johnson 
noise for 10 µm wide cantilevers.  The contours are for constant stiffness, with 
the spring constant written above the contour.  The dotted lines give the 1/f 
limited resolution, and the solid lines give the Johnson limited resolution.   

The graph in Figure 6-8 illustrates the displacement resolution vs. thickness for 

cantilevers of given spring constants.  The dashed lines of constant spring constant 

correspond to the left axis, and indicate the Hooge limited resolution.  The solid lines 

correspond to the Johnson limited resolution, and are to be read off the right axis.  The 

Hooge limited resolution is given per root-decade of bandwidth since the integrated noise 

per decade is constant.  The Johnson noise is flat vs. frequency, and is therefore given as 

m/ Hz .  Note that once a cantilever is fully limited by 1/f noise, reduced thickness 

worsens the resolution, although it may still be advantageous due to bandwidth gains.  



   

 

93Chapter 6 

6.6. Example of cantilever design 

As an example, consider the design of a 0.01 N/m 100 kHz cantilever intended to 

operate in a bandwidth from 10 Hz up to half its resonance, 50 kHz.  From Figure 3-3, a 

maximum thickness of 0.2 µm is required.  A width of 10 µm is convenient, and from 

equation (3.1) the length is set to 70 µm.  The legs should extend half the total length and 

the doping 1/3rd the cantilever thickness.  For the bandwidth calculations fmin=10 Hz and 

fmax=50 kHz, so the bandwidth figure for Figure 6-5 is 49990/3.7=13500.  The cantilever 

volume is 134 µm3, so from Figure 6-5 the optimal doping will be 4⋅1018 cm-3.  From 

Figure 6-7 the anneal should be ~2⋅10-6 cm. 

To calculate the expected displacement resolution this cantilever in a bandwidth from 

10 Hz to 50 kHz, use Figure 6-8 to compute sqrt(((3⋅10-10 m/ decade )2
 × (3.7 decades)) 

+ ((4⋅10-12 m/√Hz)2
 × (49990 Hz))) to get 1 nm displacement resolution in this 

bandwidth.  Since we have chosen a spring constant of 0.01 N/m, the force resolution is 

10 pN. 

The resonant frequency of this cantilever is determined to be 100 kHz from Figure 

3-3. 

6.7. Summary 

Piezoresistive cantilevers have been analyzed and optimized including expressions 

for both the 1/f and the Johnson noise, as well as the cantilever sensitivity.  These 

equations provide a complete expression for cantilever resolution.  Using this expression, 

an optimization analysis has been performed, with the following conclusions: 
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Design 

• The maximum cantilever thickness and the cantilever length will be set by spring 

constant and bandwidth requirements.  For a fixed spring constant the force 

resolution varies as w1/6 and the resonance varies as w-2/3, so narrower is 

preferable, although the effect on resolution is small. 

• For piezoresistors limited by Johnson noise, improved resolution can be achieved 

by reducing the cantilever thickness until, due to processing limitations, β~0.7 can 

no longer be achieved.  For cantilevers limited by 1/f noise, thicker beams have 

improved resolution but lower bandwidth. 

• The cantilever legs should extend between 30% to 70% of the total length, with 

shorter legs for Johnson limited devices, and longer ones for 1/f noise limited 

cantilevers. 

Processing 

• The reduction of the piezoresistive coefficient with increased doping is not as 

severe as is often assumed, and can be expressed according to equation (6.3). 

• The optimal thickness of the doped layer is one third of the total thickness with a 

20% loss in resolution for dopant depths of 0.2t and 0.6t.  

• For maximum resolution cantilevers should be doped as a function of their 

bandwidth and volume according Figure 6-5. 

• For cantilevers limited by 1/f noise the optimal anneal is related to the thickness t 

according to Dτ=0.025t2, where Dτ is in meters squared and t is in meters.  Most 

cantilevers should use an anneal of ~2⋅10-6 cm, the maximum for which there is 

experimental Hooge noise data. 
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Operation 

• The cantilever should be operated at as high a bias voltage as its power 

dissipation can tolerate. 
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Chapter 7. A novel axial resonant probe 

Up to this point, AFM probes have been evaluated primarily with regards to their 

force or displacement resolution and bandwidth.  Force resolution was improved by 

making softer cantilevers, and bandwidth was improved by making smaller devices.  This 

approach works for both piezoresistive and optically detected cantilevers.  As softer 

cantilevers are used to achieve high force resolution, however, the force instabilities 

discussed in section 2.2 become a major concern.  Cantilevers are unable to measure 

forces if the slope of an attractive force gradient exceeds the spring constant of the 

cantilever.  An analogous phenomenon occurs when pulling on macromolecules, where 

the force difference and spacing between consecutive bonds to be broken will determine 

whether the second bond can be resolved independently from the first with a cantilever of 

a given spring constant. 

 Because of force instabilities, force transducers with high stiffness and excellent 

force resolution are required.  In addition to force curve measurements, if a probe is stiff 

enough to avoid snap-down, non-contact imaging using attractive forces can be 

performed without touching the surface1.  This type of imaging minimizes friction forces 

that can affect the image and avoids high repulsive forces that can damage the tip or 

sample.  Unlike contact mode imaging, where a great many atoms can be in contact, 

resulting in averaging of the signal, the forces in non-contact mode imaging are 

dominated by the nearest several atoms.  For this reason, non-contact AFM is usually 

used for true atomic resolution images2.  Non-contact imaging is also used for images of 

magnetic fringing fields3,4 and imaging of localized charge5,6. 

In non-contact AFM, the cantilever is oriented parallel to the surface, and is oscillated 

normal to the sample at its resonance.  The presence of a force gradient from the tip-

sample interaction results in an effective spring constant given by keff=k+dF/dz, where z 
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is the height of the tip above the sample1.  By tracking changes in the resonance, the force 

gradient can be measured.  A relatively stiff cantilever (k>10 N/m) is required to avoid 

snap-down instabilities. 

 A variation of this technique used for distance control in near field scanning 

optical microscopy (NSOM) is a mode called shear force microscopy7.  In this mode, a 

cantilever perpendicular to the surface is driven at resonance.  Attractive forces increase 

the resonant frequency, much like a pendulum in high gravity has a higher natural 

frequency.  Because the cantilever is perpendicular, there is little concern of snap-down 

instabilities.  This permits the use of softer cantilevers for improved force resolution.  

Using this approach, atto-Newton-level forces have been measured in vacuum at low 

temperature8. 

 Both non-contact AFM and shear force microscopy are valuable techniques, 

resistant to force gradient instabilities, but they share a substantial limitation—the 

position of the probe tip is no longer precisely specified.  Oscillation amplitudes on the 

order of 10 nm and greater are frequently used.  For non-contact AFM, the measured 

force gradient is therefore actually the average over this tip motion, although the lateral 

spatial resolution is still well defined.  For shear force microscopy, the lateral resolution 

is directly blurred by the tip motion.  Neither technique is applicable for pulling on 

macromolecules, since nanometer-scale tip motion is unacceptable where the bonds to be 

measured may be only angstroms apart.  Non-contact AFM is further unsuitable for this 

purpose, since it measures force gradients and not forces. 

 A third technique used to resist force instabilities is to stiffen a conventional 

cantilever by use of a force-feedback re-balancing technique.  In one partially successful 

attempt, the cantilever end was coated with a magnetic material, and an external magnetic 

field used to exert forces on the tip9.  To balance the cantilever during a force instability 



   

 

101Chapter 7 

requires a closed-loop bandwidth considerably greater than the cantilever resonance, 

however, which their system did not have the required actuator authority to achieve. 

Another advantage that non-contact and shear-force microscopy share over traditional 

AFM use is the benefit of resonant detection.  The popularity of resonant sensing as a 

technique for MEMS sensors is evidence of its advantages, and resonant detection has 

been employed for a variety of high resolution pressure sensors and accelerometers10,11. 

There are several advantages to resonant-based sensing techniques for 

micromachined sensors.  Signals varying at frequencies well below the device resonance 

cause shifts in the resonant frequency.  As a result, the resolution is only influenced by 

noise near the resonance, and not the 1/f noise that is present at low frequencies for 

almost all detection techniques.  As a further benefit, the frequency sensitivity scales 

favorably with reduced dimensions, as will be shown in section 7.2, and can be quite high 

for appropriately designed micromachined sensors.  Finally, the forces to be measured 

can be applied axially to the resonator, resulting in a highly stiff transducer. 

7.1. An axial resonant AFM probe 

A probe concept that exploits the advantages of resonant detection with a stationary 

tip is illustrated in Figure 7-1.  A cantilever is oriented perpendicular to the surface, as in 

shear force microscopy, but a tether near the end of the beam constrains the tip from 

oscillating, while allowing axial forces to be transmitted to the resonator.  The tether is 

the critical addition, and is illustrated conceptually as a block on rollers.  In this way, the 

tether directly couples vertical forces to the sensing element, but prevents any motion of 

the resonating beam from being transmitted to the tip, which remains stationary.  The 

oscillator then responds to forces (not force gradients) by a shift in resonance. A close 

analogy can be drawn to the tuning of a violin or guitar, where the bridge prevents the 
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string from motion near the tuner, but permits the tension applied by the tuner to be 

transmitted to the rest of the vibrating string.  An earlier non-microfabricated AFM sensor 

using this concept was in fact called a nanoguitar12. 

 

Figure 7-1.  Schematic illustration of resonant beam AFM probe with stationary 
tip. 

This sensor design provides three major benefits: 1) a vertical cantilever is extremely 

stiff, and therefore much less susceptible to force instabilities, 2) the motion of the 

resonating beam is measured near resonance, well away from the 1/f noise of the 

secondary detector 3) the tip can be nearly stationary, for precise location and 

manipulation. 
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7.2. Sensor design 

There are several key components to the sensor design.  First, the oscillating beam 

should be designed for maximum force resolution.  Second, the tether needs to ensure 

that the tip remains as stationary as possible, while transmitting the applied force to the 

resonant beam.  Third, a method must exist for excitation of the resonator, and finally, the 

tip must be sharp and able to access the surface for probing.  All of these objectives must 

be satisfied in a manner compatible with relatively planar microfabrication techniques. 

It will be shown in the following section that a thin beam is critical to high sensitivity 

frequency shifts.  Although a design similar to the one illustrated in Figure 7-1 could 

likely be fabricated using DRIE techniques, a thinner oscillator can be fabricated if the 

design is modified, as illustrated in Figure 7-2.  In this case, the oscillator vibrates out of 

the plane and can therefore be deposited as a thin layer, rather than defining the thickness 

lithographically.  It is also a more convenient orientation for an integrated piezoresistive 

sensor to measure the beam motion. 
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Figure 7-2.  Illustration of an oscillator and tether for a planar fabrication 
process.  The beam oscillates in the y-direction, measured forces are applied in 
the z-direction.  The tether prevents the oscillator motion from being transmitted 
to the tip, so the tip does not move in response to the oscillations. 

Beam design 

The basic design trends for the resonator design can be derived from a simple 

sensitivity analysis.  From fundamental beam equations13, the resonant frequency of a 

beam with fixed ends, under an applied load F is given approximately as 
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where ω0 is in radians per second, E is the modulus of elasticity and ρ is the density of 

the beam material.  The width, length, and thickness of the beam are w, l and t 

respectively.  Differentiating this expression with respect to the applied force F, and 

considering the response where F is small compared to the buckling force, gives the 

sensitivity of the resonant frequency to an applied load as 
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By itself, this expression could be misleading, since a simple external frequency 

multiplier can make this number arbitrarily large.  Similar to the ∆R/R sensitivity quoted 

for piezoresistors, this expression can be normalized by the unloaded resonance to give 
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This equation gives the essential design objectives for high sensitivity:  thin, long and 

narrow beams, in that order of importance.  The beam width chosen was 4 µm, about 

twice the minimum line width of the stepper aligner used for the masks, and the beam 

thickness was chosen to be 0.2 µm.  We were attempting 0.1 µm piezoresistors for the 

first time concurrent with the fabrication of these probes14, and some margin was desired 

in case the thinner process failed.  A length of 200 µm was chosen to set the fundamental 

resonance in the 10s of kilohertz, away from most probable 1/f noise sources.  Typical 

dimensions for surface micromachined resonant sensors are usually a 2 µm thickness, 

widths some 10s of microns and lengths in the hundreds of microns.  The dimensions 

chosen for this sensor therefore improve the sensitivity roughly four orders of magnitude, 

primarily due to our capability of making thin piezoresistors. 

The tether 

In the coordinate system indicated in Figure 7-2, the x-z plane is the surface of the 

wafer.  A surface to be probed would lie in the x-y plane.  The oscillating beam motion is 

in the y-direction, so in order to keep the tip stationary, a tether is needed to resist motion 

in y.  The surface forces to be measured occur in the z-direction, so the tether should be 

flexible along the z-axis to effectively transmit forces to the resonator.  This can be 
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achieved with a cross-beam tether that is thick in the y-direction, and narrow in the z-

direction. 

The ideal tether does not exert any force in z, so a prudent observer might wonder if 

the z-direction stiffness of the tether will affect the forces measured by the oscillator.  To 

applied forces, the bending of the tether and the axial compression of the resonator look 

like springs in parallel.  If thickness is measured in the y direction, the tether width 

measured in the z direction, and the length is the distance between the two supports, the 

spring constant of the tether is 
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The spring constant of the oscillating beam axially is 
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 Since the stiffness of a beam varies as the cube of its thickness, and because the 

oscillator is only 0.2 µm thick, a 2 µm-thick by 400 µm-long tether should attenuate the 

tip motion by several orders of magnitude compared to an un-tethered beam.  The width 

of the oscillator was set at a minimum of 2 µm based on the lithography capabilities of 

the aligner.  The bending spring constant of the tether in the y-direction is 0.68 N/m, 

compared to the axial spring constant of 680 N/m for the oscillator.  This means that 

99.9% of the applied force is absorbed in the oscillator, and the tether effect is 

insignificant.  The 680 N/m axial spring constant is the number that determines 

susceptibility to force gradient instabilities, so the cantilever is immune to such problems. 

Probe tip 

An essential part of any AFM probe is a sharp tip, usually with a radius of less than 

10 nm.  Conventional AFM tip-making techniques are developed for placing the tip at 

right angles to the cantilever and are not applicable for a vertical probe.  Fortunately, a 

technique has been developed at IBM Almaden to fabricate in-plane tips using a brief 
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TMAH etch to define <111> planes which intersect to form a tip of radius less than 

5 nm15.  For proof of concept of these probes, a sharp tip was not required, and a tip was 

simply defined as a sharp vertex on the mask. 

The other issue for the probe tip is that it be able to access the sample with clearance 

for the chip corners.  This can easily be accomplished by extending the tip on a support 

member.  In order that the tip beam not flex and cause tip motion, this beam should be 

rigid. 

Driving the oscillator 

The signal to noise ratio of resonant sensors improves with larger oscillation 

amplitudes.  It is preferable, therefore, to drive the beam with larger oscillation 

amplitudes than result from intrinsic thermomechanical motion alone.  AFM resonant 

probes usually use a piezoelectric actuator to shake the entire chip, but such a method is 

unacceptable if the tip is to remain stationary.  The other likely options for the drive are 

capacitive or thermal.  Both capacitive and thermal drive result in forces at twice the 

voltage drive signal, because the forces are proportional to the square of the voltage.  The 

resulting motions is therefore at twice the driving frequency, which is important for 

distinguishing motion signals from electrical noise due to the drive signal. Capacitive 

drive was chosen for this application, out of concern that a thermal drive might not 

provide sufficient amplitude for low-Q oscillation in air, particularly at high frequencies. 

The electrostatic force between two parallel plates is approximately given by 
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where VB is the voltage difference between the two surfaces, A is the surface area, ε is 

the relative dielectric constant, ε0 is the dielectric permittivity of a vacuum (8.85 × 10-12 

C/Nm2) and d is the distance between the two plates.   
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A narrow oscillating beam is favored from sensitivity concerns, yet provides little 

area with which to generate electrostatic drive forces.  Accordingly, a paddle was added 

at the center to increase the area for the capacitive drive.  This paddle also provides 

surface area to reflect a laser, which makes optical detection of the oscillator possible, 

either for characterization or operation.  For the purposes of this proof-of concept, the 

drive electrode was a length of fine copper wire epoxied onto the chip and bent close to 

the oscillator with a micromanipulator, as illustrated in Figure 7-3.  The end of the wire 

was first melted with a lighter to produce a ball at the end of approximately 500 µm 

radius.  With a sphere on the end of the driving electrode, the electrode could be 

positioned close to the paddle without concern for the orientation of the wire. 

 

Figure 7-3.  Calibrating an axial resonant probe.  The sensor is calibrated by 
pressing on a micromachined membrane of known spring constant.  A thin 
copper wire is epoxied to the chip to capacitively excite the resonator. 
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Secondary detection 

The primary objective, detecting forces applied to the tip, is achieved by measuring 

the motion and resonance of the oscillator by way of a secondary detector.  Optical 

detection with an interferometer or optical lever would provide the best possible 

resolution, limited only by thermomechanical noise of the paddle.  The laser detection 

that comes standard on all AFMs, however, would not be able to reflect light off the 

paddle because of the probe orientation.  For the probe to be compatible with existing 

AFMs an integrated piezoresistive sensor was chosen. 

The 1/f noise of the piezoresistor is not an issue for this sensor, so to maximize 

piezoresistor sensitivity the current path is confined to the base of the cantilever.  To this 

end, the current path at the base of the oscillator is defined by a split of the beam into two 

2-µm-wide legs for the last 10 µm, as shown in Figure 7-4. 

7.3. Fabrication 

The fabrication procedure is essentially the same as that described for the ultra-thin 

piezoresistors in Chapter 2, with the added complication that different thicknesses are 

required for the oscillator and for the tether.  This was achieved by starting with a 

2-µm-thick SOI wafer and first defining a mask layer for the tether and supporting 

structure.  With the tether protected, the rest of the surface is thinned in an anisotropic 

plasma etch to 0.2 µm.  A thin epitaxial layer was then used to create a doped layer, 

followed by another lithography and plasma etch to define the oscillator pattern. 

The other fabrication steps are then exactly as for a traditional piezoresistive 

cantilever.  The backside etch can be done with a wet etch, if the tether supports are built 

into the top epitaxial layers.  A better solution is use of the Bosch process DRIE to define 

a backside etch mask that leaves bulk silicon at the base of the oscillator and at the ends 

of the tether. 
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A composite SEM of the completed device is shown in Figure 7-4. 

 

Figure 7-4.  SEM image of force probe.  Tether is 2µm thick by 2µm wide.  
Oscillator is 0.2µm thick, 4µm wide and 200µm long. 

7.4. Applying calibrated forces 

In order to test the force resolution of the devices it was necessary to apply a known 

force load to the tip.  Calibrated loading was achieved by pressing the cantilever against a 

micromachined membrane 2 µm thick, and 2 mm on a side, as illustrated in Figure 7-3.  

If the membrane spring constant is known, then displacing the membrane a known 

amount results in the application of a calibrated load. The membrane spring constant was 

modeled using Ansys to be 0.92 N/m.  

 Pressing one cantilever against a known reference cantilever has been employed 

as a calibration technique, although not particularly reliable for normal AFM cantilevers.  

Two issues that plague this type of cantilever calibration are not present in this 

measurement.  The first, and perhaps most damaging, is that the two cantilevers are rarely 

parallel.  Most AFMs intentionally tilt the probe cantilever 5 to 15 degrees so the 

cantilever touches the surface before the support chip.  With a tip extending several 
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microns off the end of the cantilever, pressing down introduces moments that cause the 

cantilever to bow upwards rather than bend downwards as expected.  Because this model-

T probe is oriented vertically and has an in-plane tip, this issue does not arise. 

 The second issue is that if the reference cantilever is not contacted at the tip, the 

spring constant may be significantly different than expected.  The same problem occurs 

when pressing on a membrane if the probe is off center.  For a 2 mm-wide square 

membrane, however, the spring constant 200 µm from the center is only 7% greater than 

at the center, and 33% greater 400 µm from the center.  Placing the probe with this level 

of accuracy does not pose a problem.  For 7% accuracy pressing on a typical 200 µm-

long AFM cantilever, the load must be within 5 µm of the cantilever end. 

To test the lower force resolution limits, forces on the order of 1 nN or less must be 

applied to the sensor.  Given the ~1 N/m spring constant of the membrane, this will 

require sub-nanometer displacements of the probe, which can best be achieved with a 

piezoelectric actuator.  An existing AFM could be used as the actuator for this 

experiment, but in order to explore the importance of resonance quality on the resolution 

a system was needed which could function either in air or vacuum.  To this end a stage 

was manufactured with a manual screw to approach within a few microns of contact, and 

a piezoelectric stack to provide the fine motion.  A photo of this stage is shown in Figure 

7-5.   
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Figure 7-5.  Photo of experimental set-up.  This is essentially a crude AFM, 
intended for measuring the force resolution inside a vacuum chamber. 

The piezoelectric stack was calibrated using a laser vibrometer and found to have a 

displacement response of 59 nm/V.  A Burleigh high-voltage op-amp was used to apply a 

large DC offset for the approach, with a smaller sine wave added onto the approach 

signal to apply a small force modulation.  The voltage output from the Burleigh had 20-

25 mVrms of noise on the signal, which corresponds to almost 2 nN of force noise.  In 

order that this noise not limit the detectable force resolution, the low frequency approach 

voltage was low-pass filtered at 1 Hz, reducing the voltage noise to 0.7 mVrms, or 60 pN 

of force noise.  The applied force sine-wave signal was then AC coupled in after the high-

voltage op-amp to modulate the piezoelectric stack. 
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7.5. Results 

Piezoresistor calibration 

To characterize the secondary detector, a Polytek laser vibrometer was targeted on the 

paddle, and the vibrometer and piezoresistor signals compared.  This measurement was 

done with no loading on the probe.  Two principal modes are visible on the vibrometer 

signal, as shown by the solid line in Figure 7-6.  The fundamental resonance occurs near 

25 kHz, with a second resonant mode at 45 kHz.  The response from the piezoresistor is 

too noisy to show these thermomechanical noise peaks, but applying a capacitive drive 

signal to the paddle creates a motion that is detectable by both the vibrometer and 

piezoresistor.  From such a measurement, the piezoresistor response was measured to be 

5300 V/m, or ∆R/R of 4200 m-1.  From this data the amplitude of the oscillation voltages 

during operation can be translated into displacement. 
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Figure 7-6.  Vibrometer signal showing thermomechanical motion of the paddle 
and the probe tip.  The solid line illustrates the paddle motion, which has 
resonant modes at ~25 kHz and ~45 kHz.  The tip has a large unwanted mode at 
~10 kHz due to torsion of the tether.  

Unwanted tip modes 

The dotted line trace on Figure 7-6 was measured with the vibrometer reflecting off 

the probe tip.  There is a large peak near 10 kHz, which clearly indicates unwanted 

motion caused by torsion of the tether.  This design flaw limits the use of these first-

generation probes, since without a stationary tip one of the main advantages is lost.  The 

addition of a second tether bar would allow the two tethers to exert a much higher 

moment than a single tether, still without significantly absorbing the forces intended for 

the resonator.  This concept is illustrated in There is no limit on the spacing between the 

two tethers, so the moment they apply can be arbitrarily increased until this mode is no 

longer a problem. 
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Figure 7-7.  Axial resonant probe with a double tether.  The two tethers can 
exert a restraining moment, preventing the tip from oscillating by the torsion of 
a single tether. 

Demodulating the resonant signal 

Applied loads modulate both the phase and amplitude of the resonator.  For this 

measurement, the amplitude-modulated signal was measured using the oscillator response 

as a slope detector.  This approach, often used in the AFM community for its simplicity, is 

to drive the resonator with a sine-wave input slightly above its resonant frequency1.  The 

amplitude of the motion will be enhanced by the transfer function of the oscillator.  For a 

fixed drive frequency, the resulting amplitude will vary as the resonator response curve 

shifts laterally.  This is illustrated in Figure 7-8. 
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Figure 7-8.  Amplitude detection of resonance shifts.  The oscillator is driven at 
a fixed frequency, near the resonant peak.  As the resonance shifts, the Q 
enhancement of the oscillator motion is either increased or decreased, resulting 
in an amplitude modulated signal. 

There are two major disadvantages to this technique.  The first is that the sensitivity 

varies with the applied load.  The maximum slope of the transfer function occurs at a 

single point just off resonance and as the resonance shifts further away from the drive, the 

slope of the response curve changes.  The second disadvantage is more fundamental.  It 

was shown by Albrecht et al. that amplitude changes cannot occur instantaneously 

because transients must first settle16.  For high Q oscillators these transients can limit the 

bandwidth capabilities of the measurement to less than 1 Hz.   

For the characterization of this sensor, the slope detector was adequate.  Simple 

frequency counting is another option, but the signal to noise of a frequency counter 

degrades rapidly with increased bandwidth and is therefore not favored for AFM use.  A 

more complicated and versatile phase demodulator developed by Dürig et al. would be 

more appropriate as a long-term solution, however17. 
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For a second order system with a given Q and ω0 the maximum slope of the 

frequency response curve has been shown to occur at ω0=ω0(1±1/Q 8 )1.  At this point 

the slope of the response is 
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This equation gives the change in the amplitude of the cantilever motion as the drive 

frequency is swept near resonance.  It is also the change in amplitude of a fixed-

frequency drive as the resonant frequency shifts by amount dω0 due to an applied load.  

Combining this equation with the frequency sensitivity from equation (7.2) gives the 

change in amplitude of the drive signal for a given force dF as 
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This equation has the same geometry dependence as equation (7.3), validating the 

original sensitivity derivation as a design tool. 

Force resolution 

Using the set-up described in section 7.4, calibrated loads were applied to the sensor.  

As the probe approached the membrane, the resonant frequency increases.  Eventually, 

the membrane jumps up into contact with the probe, and the oscillation amplitude is 

slightly diminished due to the elimination of the tip motion.  Once in contact, a 12 nm z-

motion at 50 Hz was applied to the membrane, resulting in an applied 12 nN load.  The 

resulting amplitude modulated signal was measured with a lock-in amplifier with a 

measurement bandwidth of 1 kHz and recorded on a digital oscilloscope. This data is 

shown as the lower trace in Figure 7-9.  The Q of the cantilever at this time was only 20, 

due to air damping of the thin oscillator, and the oscillation amplitude was 36 nm.  The 

resolution in a 1 kHz bandwidth is 9 nN, limited by the 300 pN/√Hz white displacement 



   

 

118 Chapter 7 

noise of the piezoresistor.  For detection using the laser vibrometer, thermomechanical 

noise is the limiting source. 

The same measurement was then performed in a 1 mTorr vacuum.  At this pressure 

the Q improves to 450.  This Q value was much lower than expected for such a single-

crystal-silicon cantilever, and is perhaps due to surface contamination.  There was visible 

contamination on other devices from this wafer, remaining from an inadequate clean prior 

to the critical point drying release. Single crystal cantilevers thinner than these have been 

demonstrated with a resonance quality of greater than 15000, and up to 80000 after 

annealing to remove surface contamination18.  Even for a Q of 450, with oscillation 

amplitude of 53 nm, the force resolution improves dramatically.  A 1 nN applied load has 

much better signal to noise in vacuum than the 12 nN load in air as shown in Figure 7-9.  

The force resolution under vacuum is about 200 pN in 1 kHz or 7 pN/√Hz.  This force 

resolution is approaching the limit of what this membrane calibration source can apply, 

due to the 60 pN of amplifier noise on the piezoelectric drive signal. 
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Figure 7-9.  Force resolution of axial probe in vacuum and in air.  (a) Time trace 
of a 1 nN force applied in vacuum with an oscillation amplitude of 53 nm, 
compared to (b) a 12 nN load applied in air with oscillation amplitude of 36 nm.  
Both measurements are in a 1 kHz bandwidth.  The trace in vacuum has a Q of 
~450, compared to a Q of ~20 in air, and the resulting signal to noise ratio is 
improved by a factor of ~40 in vacuum compared to air. 

According to equation (7.8), the sensitivity should improve linearly with the Q and 

with the oscillation amplitude.  Since the white noise from the piezoresistor is unchanged 

in air or vacuum, the resolution should improve as 1/sensitivity.  From the measured 

increase in amplitude and Q, the resolution should have improved by a factor of 33.  The 

measured resolution improved by a factor of 40, a discrepancy that is within the error of 

the measurement.  For clean cantilevers with better Q, therefore, the force resolution 

should improve at least another order of magnitude. 

The Q for such cantilevers is dramatically degraded in liquid, down to single digit 

values19.  There are many interesting possible force measurements on biological 

molecules currently on the fringe of the capabilities of the AFM.  If an encapsulation 
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method could be devised to permit the Q of vacuum while in water, such a probe could 

prove quite valuable. 

An effective encapsulation method would need to seal the resonator in a vacuum 

cavity, yet allow forces to be transmitted to the oscillator within.  A membrane 

perpendicular to the oscillating beam (in the x-y plane of Figure 7-2) is one possibility. 

Because of the high stiffness of the vertical probe, these forces correspond to minute 

displacements.  For a spring constant of 680 N/m, a 10 nN force corresponds to less than 

a 0.1 Å displacement, so even in air the displacement resolution is excellent.  In vacuum, 

the 200 pN force resolution is equivalent to a 0.3 pm displacement. 

7.6. Summary and future work 

A novel probe has been presented which uses a resonating beam, tethered at both ends 

to create a high-stiffness resonant force probe with good resolution, a stationary tip, 

immunity to force gradient instabilities and a large dynamic range.  Issues remain 

regarding unwanted tip motion, though they can be remedied in future designs with the 

addition of a second tether.  For the best resolution, operation in a vacuum is required, 

which limits the potential use to a much smaller community with vacuum AFMs.  If a 

method to encapsulate the resonator could be devised, however, the probe would extend 

the force measurement capabilities of the AFM for measurements in air or water. 
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Epilogue 

For those that made it this far through the dissertation, a natural question is this:  if I 

were starting the DNA unzipping experiment today, how would I approach it?  My 

estimations of the requirements for the project have not changed, so the question is really 

whether or not a probe is now available with the following characteristics:  

• 1 pN force resolution,  

• 10 Hz to 100 kHz bandwidth 

• a spring constant greater than 0.01 N/m. 

With these specifications in mind, I can evaluate the ultra-thin piezoresistors and the 

axial resonant probe. 

Thin Piezoresistive Cantilevers 

Once the excellent sensitivity of the 1000 Å piezoresistive cantilevers had been 

demonstrated, I should have been able to meet the above specifications.  The unexpected 

increase in 1/f  noise for the small cantilevers brings this into question, however. 

Devices 500 Å thick are probably possible without further innovation.  From Figure 

6-8 then, the Hooge limited resolution would be (0.4 nm/√dec)⋅(2√dec)⋅(0.01 N/m) = 

8 pN.  From the same graph, the Johnson limited resolution would be 

(1pm/√Hz)⋅√(99990 Hz)⋅0.01 N/m) = 3 pN.  The total force resolution would therefore be 

~8.5 pN.  From Figure 3-3, the resonant frequency of the cantilever would be about 

400 kHz, safely above the specification. 

While these numbers are close, they also presume nearly optimal cantilevers, and still 

turn up almost an order of magnitude short of the desired force resolution.  The cantilever 

could be increased in length to give a spring constant of 0.001 N/m and still meet the 
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bandwidth specifications.  Force instabilities may now become a concern, however, 

although the device is still a two order of magnitude improvement in stiffness over 

optical tweezers.  In this case, the force resolution is ~3 pN. 

I am also concerned as to how these cantilevers will operate in liquid.  My original 

piezoresistor work for the NRL biosensor project began because they could not use 

commercial piezoresistive cantilevers in solution.  Under bias in an aqueous solution, the 

aluminum leads undergo an electrochemical reaction and corrode in a matter of seconds.  

This corrosion problem was overcome with by coating the leads with a passivating 

polyimide layer.  A similar coating could be used for these cantilevers, but the biosensor 

cantilevers additionally had a 1000 Å-thick passivating oxide layer on the beam itself.  A 

500 Å-thick cantilever obviously cannot such a layer, and there may be problems with the 

bare silicon in an aqueous solution. 

Axial Probe 

The axial resonant probe is another possibility for the DNA-pulling measurement.  

Because it uses resonant detection, 1/f noise is not a problem.  The current probes 

achieved 7 pN/√Hz force resolution in vacuum, which translates to 2 nN over a 100 kHz 

bandwidth.  If that device were reduced in thickness to 500 Å (a factor of 4), the 

sensitivity should improve 64-fold.  The length would have to also be reduced to boost 

the resonance up to the mega-Hertz region for the bandwidth, but the sensitivity could 

still improve at least an order of magnitude.  The Q can reasonably be expected to 

increase 30-fold.  A 16x improvement in sensitivity and a 30x improvement in Q, 

however, still only get the probe to 5 pN in a 100 kHz bandwidth. 

There may be other knobs to play with here, and another order of magnitude 

improvement could be achieved by using optical detection instead of the built-in 

piezoresistor, but I am glossing over the critical limitation -  these Q values are 
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obtainable only in vacuum, not in liquid.  This means the encapsulation problem must 

also be solved.  The first difficulty here is figuring out a fabrication process that makes a 

resonator perpendicular to a sealing membrane.  Even if this is solved, there is the matter 

of the force due to the pressure difference across the membrane.  Atmospheric pressure of 

105 Pa exerts 1 mN of force on a 100 µm by 100 µm square membrane.  Designing a 

mechanical system to account for this unwanted additional force, and the force noise that 

pressure fluctuations would cause, is a task I wouldn’t even wish on a thesis advisor. 

The value of this type of resonant probe probably lies in its ability to measure minute 

displacements.  There are few ways to measure pico-meter displacements, which this 

system can accomplish in air, even without encapsulation.  Such a device with a built in 

NSOM tip could alternatively provide the height control for a near-field scanning 

microscope with a non-oscillating tip.  The problem of the unwanted tip oscillations 

should be straightforward to solve. 

 

Despite these concerns, it would be a mistake to underestimate the innovation of 

future scientists, and I expect to see exciting force measurements in the not-too-distant 

future.  If pressed, I would wager that optical detection techniques will play a role.  

Piezoresistors in other materials may also come to light, although Hooge-like noise was 

recently also observed in carbon nano-tubes (P.G. Collins, M.S. Fuhrer and A. Zettl, “1/f 

noise in carbon nanotubes”, Applied Physics Letters, Vol 76., No. 7, pp. 894-896, 2000). 



   

 

127

APPENDIX A: Table of Variables 

Variable Definition Units 

α Hooge constant - 

β  sensitivity efficiency - 

δ distance between bonds m 

ε relative dielectric permittivity - 

ε0 dielectric permittivity of a vacuum C/Nm2 

µ mobility cm2V-1s-1 

π l piezoresistive coefficient m2/N 

ρ resistivity Ω⋅cm 

σ stress N/m2 

ω0 resonant frequency rad/sec 

a leg length ratio - 

A area m2 

A0 oscillation amplitude m 

B measurement bandwidth Hz 

c distance to neutral axis m 

D diffusion coefficient cm2s-1 

d distance between capacitive plates m 

Dio diffusion coefficient cm2s-1 

E modulus of elasticity N/m2 

Eia activation energy eV 

F force N 

f0 resonant frequency Hz 

Fth Force noise power N2/Hz 
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H 2nd order oscillator transfer function - 

I Area moment of inertia m4 

I total current A 

J current density A/m2 

k spring constant N/m 

kB Boltzmann’s constant J/K 

l length m 

lt tether length m 

lleg leg length m 

m effective mass kg 

M moment N⋅m 

N number of carriers - 

p doping density cm-3 

P piezoresistive coefficient factor 0<P<1 

q electron charge C 

QT total charge density C/cm2 

R resistance Ω 

SH Hooge noise power density V2/Hz 

SJ Johnson noise power density V2/Hz 

SF,th thermomechanical force noise power 
density 

N2/Hz 

Sth thermomechanical displacement 
noise power density 

m2/Hz 

t thickness m 

tt tether thickness m 

T temperature K 

td doped thickness m 

VB bias voltage V 
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Vout output voltage  V 

VH
2 Hooge voltage noise power V2 

VJ
2 Johnson voltage noise power V2 

w width m 

wt tether thickness m 

x cantilever displacement m 

xmin displacement resolution m 

z distance to surface m 

 


